Advertisement

Journal of Electronic Materials

, Volume 44, Issue 8, pp 2835–2841 | Cite as

Electrical Characteristics of Hybrid-Organic Memory Devices Based on Au Nanoparticles

  • Razan R. Nejm
  • Ahmad I. AyeshEmail author
  • Dagou A. Zeze
  • Adam Sleiman
  • Mohammed F. Mabrook
  • Amal Al-Ghaferi
  • Mousa Hussein
Article

Abstract

We report on the fabrication and characterization of hybrid-organic memory devices based on gold (Au) nanoparticles that utilize metal–insulator–semiconductor structure. Au nanoparticles were produced by sputtering and inert-gas condensation inside an ultrahigh-vacuum compatible system. The nanoparticles were self-assembled on a silicon dioxide (SiO2)/silicon (Si) substrate, then coated with a poly(methyl methacrylate) (PMMA) insulating layer. Aluminum (Al) electrodes were deposited by thermal evaporation on the Si substrate and the PMMA layer to create a capacitor. The nanoparticles worked as charge storage elements, while the PMMA is the capacitor insulator. The capacitance–voltage (CV) characteristics of the fabricated devices showed a clockwise hysteresis with a memory window of 3.4 V, indicative of electron injection from the top Al electrode through the PMMA layer into Au nanoparticles. Charge retention was measured at the stress voltage, demonstrating that the devices retain 94% of the charge stored after 3 h of continuous testing.

Keywords

Organic memory devices nanoparticles Au 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors would like to acknowledge the British Council for its support through the PMI2 Connect program, Grant No. RC GS 249. This work was performed while the corresponding author was working at the Department of Physics, United Arab Emirates University, Al Ain, United Arab Emirates.

References

  1. 1.
    H.T. Lin, P. Zingway, J.R. Chen, G.W. Hwang, J.F. Fan, and Y.J. Chan, Electron Device Lett. 28, 951 (2007).CrossRefGoogle Scholar
  2. 2.
    D. Tsoukalas, Philos. Trans. R. Soc. A 367, 4169 (2009).CrossRefGoogle Scholar
  3. 3.
    M.F. Mabrook, Y. Yun, C. Pearson, D.A. Zeze, and M.C. Petty, Appl. Phys. Lett. 94, 173302 (2009).CrossRefGoogle Scholar
  4. 4.
    S.J. Kim, Y.S. Park, S.H. Lyu, and J.S. Lee, Appl. Phys. Lett. 96, 033302 (2010).CrossRefGoogle Scholar
  5. 5.
    H. Hoppe and N.S. Sariciftci, J. Mater. Res. 19, 1924 (2004).CrossRefGoogle Scholar
  6. 6.
    D. Gupta, Directions 8, 111 (2007).Google Scholar
  7. 7.
    A. Kathalingam and J.K Rhee, J. Electron. Mater. 41, 2162 (2012).CrossRefGoogle Scholar
  8. 8.
    M.N. Awais and K.H. Choi, J. Electron. Mater. 42, 1202 (2013).CrossRefGoogle Scholar
  9. 9.
    J. De Blauwe, IEEE Trans. Nanotechnol. 1, 72 (2002).CrossRefGoogle Scholar
  10. 10.
    B. Park, K.J. Im, K. Cho, and S. Kim, Org. Electron. 9, 878 (2008).CrossRefGoogle Scholar
  11. 11.
    K. Ya-Chin, T.J. King, and C. Hu, IEEE Trans. Electron Devices 48, 696 (2001).CrossRefGoogle Scholar
  12. 12.
    C.H. Lee, J. Meteer, V. Narayanan, and E.C. Kan, J. Electron. Mater. 34, 1 (2005).CrossRefGoogle Scholar
  13. 13.
    J. Ouyang, Nano Reviews 1, doi:  10.3402/nano.v1i0.5118 (2010).
  14. 14.
    Ch Sargentis, K. Giannakopoulos, A. Travlos, P. Normand, and D. Tsamakis, Superlattices Microstruct. 44, 483 (2008).CrossRefGoogle Scholar
  15. 15.
    Z. Liu, C. Lee, V. Narayanan, G. Pei, and E.C. Kan, IEEE Trans. Electron Devices 49, 1606 (2002).CrossRefGoogle Scholar
  16. 16.
    J.S. Lee, Gold Bull. 43, 189 (2010).CrossRefGoogle Scholar
  17. 17.
    C. Sargentis, K. Giannakopoulos, A. Travlos, D. Tsamakis, and G. Krokidis, International Semiconductor Device Research Symposium, p. 342 (2005).Google Scholar
  18. 18.
    M.F. Mabrooka, A.S. Jombert, S.E. Machin, C. Pearson, D. Kolb, K.S. Coleman, D.A. Zeze, and M.C. Petty, Mater. Sci. Eng. B 159–160, 14 (2009).CrossRefGoogle Scholar
  19. 19.
    S. William, M.F. Mabrook, and D.M. Taylor, Appl. Phys. Lett. 95, 093309 (2009).CrossRefGoogle Scholar
  20. 20.
    W.L. Leong, P.S. Lee, S.G. Mhaisalkar, T.P. Chen, and A. Dodabalapur, Appl. Phys. Lett. 90, 042906 (2007).CrossRefGoogle Scholar
  21. 21.
    A. Tataroglu and S. Altindal, Microelectron. Eng. 85, 2256 (2008).CrossRefGoogle Scholar
  22. 22.
    S. Kolliopoulou, P. Dimitrakis, P. Normand, H.L. Zhang, N. Cant, S.D. Evans, S. Paul, C. Pearson, A. Molloy, M.C. Petty, and D. Tsoukalas, J. Appl. Phys. 94, 5234 (2003).CrossRefGoogle Scholar
  23. 23.
    A. Prakash, J. Ouyang, J.L. Lin, and Y. Yang, J. Appl. Phys. 100, 054309 (2006).CrossRefGoogle Scholar
  24. 24.
    A.I. Ayesh, N. Qamhieh, H. Ghamlouche, S. Thaker, and M. El-Shaer, J. Appl. Phys. 107, 034317 (2010).CrossRefGoogle Scholar
  25. 25.
    J. Schmelzer, S.A. Brown, A. Wurl, M. Hyslop, and R.J. Blaikie, Phys. Rev. Lett. 88, 226802 (2002).CrossRefGoogle Scholar
  26. 26.
    A.I. Ayesh, J.G. Partridge, R. Reichel, A.D.F. Dunbar, and S.A. Brown, Proceedings of the 2004 Conference on Optoelectronic and Microelectronic Materials and Devices, (Sidney: IEEE Press, 2004), p. 327.Google Scholar
  27. 27.
    J.G. Partridge, R. Reichel, A. Ayesh, T. Matthewson, D.M.A. Mackenzie, and S.A. Brown, Solid State Electronics Research Advances, ed. S.B. Kobadze. (New York: Nova Science, 2009), p. 321, ISBN-10: 1600218512.Google Scholar
  28. 28.
    A.I. Ayesh, S.A. Brown, A. Awasthi, S.C. Hendy, P.Y. Convers, and K. Nichol, Phys. Rev. B 81, 195422 (2010).CrossRefGoogle Scholar
  29. 29.
    Oxfordshire, Nanogen-50 User Manual, Mantis Deposition Ltd. (2009).Google Scholar
  30. 30.
    A.I. Ayesh, S. Thaker, N. Qamhieh, and H. Ghamlouche, J. Nanopart. Res. 13, 1125 (2011).CrossRefGoogle Scholar
  31. 31.
    M. Gracia-Pinilla, E. Martínez, G.S. Vidaurri, and E. Pérez-Tijerina. Nanoscale Res. Lett. 5, 180 (2010).CrossRefGoogle Scholar
  32. 32.
    M.F. Mabrook, D. Kolb, C. Pearson, D.A. Zeze, and M.C. Petty, Adv. Sci. Technol. 54, 474 (2008).CrossRefGoogle Scholar
  33. 33.
    S.M. Sze, Physics of Semiconductor Devices (New York: Wiley, 1981).Google Scholar
  34. 34.
    A. Sleiman, M.C. Rosamond, M.A. Martin, A. Ayesh, A. Al Ghaferi, A.J. Gallant, M.F. Mabrook, and D.A. Zeze, Appl. Phys. Lett. 100, 023302 (2012).CrossRefGoogle Scholar
  35. 35.
    M. Alba-Martin, T. Firmager, J. Atherton, M.C. Rosamond, D. Ashall, A. Al-Ghaferi, A. Ayesh, A.J. Gallant, M.F. Mabrook, M.C. Petty, and D.A. Zeze, J. Phys. D 45, 295401 (2012).CrossRefGoogle Scholar
  36. 36.
    Y. Yun, C. Pearson, and M.C. Petty, J. Appl. Phys. 105, 034508 (2009).CrossRefGoogle Scholar
  37. 37.
    M.F. Mabrook, C. Pearson, D. Kolb, D.A. Zeze, and M.C. Petty, Org. Electron. 9, 816 (2008).CrossRefGoogle Scholar
  38. 38.
    A.I. Ayesh, S. Qadri, V.J. Baboo, M.Y. Haik, and Y. Haik, Synth. Met. 183, 24 (2013).CrossRefGoogle Scholar
  39. 39.
    A. Sleiman, M.C. Rosamond, R.R. Nejm, A. Ayesh, A. Al-Ghaferi, D.A. Zeze, and M.F. Mabrook, J. Appl. Phys. 112, 024509 (2012).CrossRefGoogle Scholar
  40. 40.
    M.Y. Haik, A.I. Ayesh, T. Abdulrehman, and Y. Haik, Mater. Lett. 124, 67 (2014).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2015

Authors and Affiliations

  • Razan R. Nejm
    • 1
  • Ahmad I. Ayesh
    • 2
    Email author
  • Dagou A. Zeze
    • 3
  • Adam Sleiman
    • 4
  • Mohammed F. Mabrook
    • 4
  • Amal Al-Ghaferi
    • 5
  • Mousa Hussein
    • 1
  1. 1.Department of Electrical EngineeringUnited Arab Emirates UniversityAl AinUAE
  2. 2.Department of Mathematics, Statistics and PhysicsQatar UniversityDohaQatar
  3. 3.School of Engineering and Centre for Molecular and Nanoscale ElectronicsDurham UniversityDurhamUK
  4. 4.School of Electronic EngineeringBangor UniversityBangorUK
  5. 5.Masdar InstituteAbu DhabiUAE

Personalised recommendations