Journal of Electronic Materials

, Volume 44, Issue 5, pp 1287–1292 | Cite as

Modeling of Threading Dislocation Density Reduction in Porous III-Nitride Layers

  • Dmitry M. Artemiev
  • Tatiana S. Orlova
  • Vladislav E. Bougrov
  • Maxim A. Odnoblyudov
  • Alexei E. Romanov
Article

Abstract

In this work, we report on the results of the theoretical analysis of threading dislocation (TD) density reduction in porous III-nitride layers grown in polar orientation. The reaction-kinetics model originally developed for describing TD evolution in growing bulk layers has been expanded to the case of the porous layer. The developed model takes into account TD inclinations under the influence of the pores as well as trapping TDs into the pores. It is demonstrated that both these factors increase the probability of dislocation reactions thus reducing the total density of TDs. The mean pore diameter acts as an effective interaction radius for the reactions among TDs. The model includes the main experimentally observed features of TD evolution in porous III-nitride layers.

Keywords

Reaction-kinetics model threading dislocations  porous III-nitride layers 

References

  1. 1.
    F.A. Marino, N. Faralli, T. Palacios, D.K. Ferry, S.M. Goodnick, and M. Saraniti, IEEE Trans. Electron Devices 57, 353–360 (2010).CrossRefGoogle Scholar
  2. 2.
    S.E. Bennett, Mater. Sci. Technol. 26, 9 (2010).CrossRefGoogle Scholar
  3. 3.
    Y.D. Wang, K.Y. Zang, S.J. Chua, S. Tripathy, C.G. Fonstad, and P. Chen, Appl. Phys. Lett. 87, 251915 (2005).CrossRefGoogle Scholar
  4. 4.
    D.-H. Lee, J.-J. Jang, B.-H. Kong, H.-K. Cho, and O. Nam, Jpn. J. Appl. Phys. Part 1 49, 058001 (2010).CrossRefGoogle Scholar
  5. 5.
    M.G. Mynbaeva, A.E. Nikolaev, A.A. Sitnikova, and K.D. Mynbaev, CrystEngComm 15, 3640–3646 (2013).CrossRefGoogle Scholar
  6. 6.
    A.E. Romanov, W. Pompe, G.E. Beltz, and J.S. Speck, Appl. Phys. Lett. 69, 3342–3344 (1996).CrossRefGoogle Scholar
  7. 7.
    V.E. Bougrov, M.A. Odnoblyudov, A.E. Romanov, T. Lang, and O.V. Konstantinov, Phys. Status Solidi A 203, R25–R27 (2006).CrossRefGoogle Scholar
  8. 8.
    J. Dundurs and T. Mura, J. Mech. Phys. Solids 12, 177–189 (1964).CrossRefGoogle Scholar
  9. 9.
    New Semiconductor Materials. Biology systems. Characteristics and Properties. http://www.matprop.ru/GaN.
  10. 10.
    H. Hartono, C.B. Soh, S.Y. Chow, S.J. Chua, and E.A. Fitzgerald, Appl. Phys. Lett. 90, 17191 (2007).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2015

Authors and Affiliations

  • Dmitry M. Artemiev
    • 1
  • Tatiana S. Orlova
    • 1
    • 2
  • Vladislav E. Bougrov
    • 1
  • Maxim A. Odnoblyudov
    • 1
  • Alexei E. Romanov
    • 1
    • 2
    • 3
  1. 1.ITMO UniversitySaint PetersburgRussia
  2. 2.A.F.Ioffe Physical Technical InstituteSaint PetersburgRussia
  3. 3.Togliatti State UniversityTogliattiRussia

Personalised recommendations