Advertisement

Journal of Electronic Materials

, Volume 44, Issue 8, pp 2624–2630 | Cite as

Thermal Conductivity of MWNT–Epoxy Composites by Transient Thermoreflectance

  • M. Brown
  • K. Jagannadham
Article

Abstract

Multiwall nanotube composites with epoxy matrix were synthesized by sonication. Thermal conductivity of the composite samples was determined by a transient thermoreflectance method using indium film as a transducer. The thermal conductivity normal to the surface followed percolation behavior. The presence of higher mass fraction of MWNTs near the surface, and the higher purity and the larger aspect ratio of MWNTs were found to be responsible for significant improvement in thermal conductivity of the composites. The barrier to conduction was found to be the width of the epoxy film separating the MWNTs. Modeling analysis showed that the interface thermal conductance between MWNTs is fairly large and is not a limiting factor for the improvement in the thermal conductivity.

Keywords

Thermal conductivity epoxy multiwall nanotubes transient thermoreflectance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Brown, H. Ling, J.C. Gallop, and J.C. Macfarlane, Appl. Phys. Lett. 87, 23107 (2005).CrossRefGoogle Scholar
  2. 2.
    P.R. Bandaru, J. Nanosci. Nanotechnol. 7, 1 (2007).CrossRefGoogle Scholar
  3. 3.
    P. Kim, L. Shi, A. Majumdar, and P.L. McEuen, Phys. B 323, 67 (2002).CrossRefGoogle Scholar
  4. 4.
    E. Pop, D. Mann, W. Qian, K.E. Goodson, and D. Hongjie, Nano Lett. 6, 5 (2006).CrossRefGoogle Scholar
  5. 5.
    P. Bonnet, D. Sireude, B. Garnier, and O. Chauvet, Appl. Phys. Lett. 91, 201910 (2007).CrossRefGoogle Scholar
  6. 6.
    C.H. Liu, H. Huang, Y. Wu, and S.S. Fan, Appl. Phys. Lett. 84, 4248 (2004).CrossRefGoogle Scholar
  7. 7.
    C.W. Nan, Z. Shi, and Y. Lin, Chem. Phys. Lett. 375, 666 (2003).CrossRefGoogle Scholar
  8. 8.
    S. Shenogin, L. Xue, R. Ozisik, P. Keblinski, and D.G. Cahill, J. Appl. Phys. 95, 8136 (2004).CrossRefGoogle Scholar
  9. 9.
    A. Yu, M.E. Itkis, E. Bekyarova, and R.C. Haddon, Appl. Phys. Lett. 89, 133102 (2006).CrossRefGoogle Scholar
  10. 10.
    S. Shenogin, A. Bodapati, L. Xue, R. Ozisik, and P. Keblinski, Appl. Phys. Lett. 85, 2229 (2004).CrossRefGoogle Scholar
  11. 11.
    Y.A. Kim, S. Kamio, T. Tajiri, T. Hayashi, S.M. Song, M. Endo, M. Terrones, and M.S. Dresselhaus, Appl. Phys. Lett. 90, 93125 (2007).CrossRefGoogle Scholar
  12. 12.
    T. Tao, Z. Yang, L. Delzeit, A. Kashani, M. Meyyappan, and A. Majumdar, IEEE Trans. Compon. Packag. Technol. 30, 92 (2007).CrossRefGoogle Scholar
  13. 13.
    R. Prasher, Proc. IEEE 94, 1571 (2006).CrossRefGoogle Scholar
  14. 14.
    M.A. Panzer, G. Zhang, D. Mann, X. Hu, E. Pop, H. Dai, and K.E. Goodson, ASME J. Heat Transfer 130, 05241 (2008).CrossRefGoogle Scholar
  15. 15.
    H. Zhong and J.R. Lukes, Phys. Rev. B 74, 125403 (2006).CrossRefGoogle Scholar
  16. 16.
    R. Prasher, X.J. Hu, Y. Chalopin, N. Mingo, K. Lofgreen, S. Volz, F. Cleri, and P. Keblinski, Phys. Rev. Lett. 102, 105901 (2009).CrossRefGoogle Scholar
  17. 17.
    J. Yang, S. Waltermire, Y. Chen, A.A. Zinn, T.T. Xu, and D. Li, Appl. Phys. Lett. 96, 023109 (2010).CrossRefGoogle Scholar
  18. 18.
    S.T. Huxtable, D.G. Cahill, S. Shenogin, L. Xue, R. Ozisik, P.A. Barone, M. Usrey, M.S. Strano, G. Siddons, M. Shim, and P. Keblinski, Nature Mater. 2, 731 (2003).CrossRefGoogle Scholar
  19. 19.
    M.B. Bryning, D.E. Milkie, M.F. Islam, J.M. Kikkawa, and A.G. Yodh, Appl. Phys. Lett. 87, 161909 (2005).CrossRefGoogle Scholar
  20. 20.
    N. Shenogina, S. Shenogin, L. Xue, and P. Keblinski, Appl. Phys. Lett. 87, 133106 (2005).CrossRefGoogle Scholar
  21. 21.
    G.D. Liang and S.C. Tjong, Mater. Chem. Phys. 100, 132 (2006).CrossRefGoogle Scholar
  22. 22.
    E. Kymakis and G.A.J. Amartunga, J. Appl. Phys. 99, 084302 (2006).CrossRefGoogle Scholar
  23. 23.
    A.V. Kyrylyuk, C. Hermant, and T. Schilling, Nat Nanotechnology 6, 364 (2011).CrossRefGoogle Scholar
  24. 24.
    M. Brown and K. Jagannadham, J. Compos. Mat. 47, 3413 (2013).CrossRefGoogle Scholar
  25. 25.
    M. Russ, S. Rahatekar, K. Koziol, H.-X. Peng, and B. Farmer, 18th International Conference on Composite Materials, pp. 1–6, 2011, ICCM18, Jeju, Korea.Google Scholar
  26. 26.
    M.J. Biercuk, M.C. Llaguno, M. Radosavljevic, J.K. Hyun, A.T. Johnson, and J.E. Fischer, Appl. Phys. Lett. 80, 2767 (2002).CrossRefGoogle Scholar
  27. 27.
    S.-Y. Yang, C.-C.M. Ma, C.-C. Teng, Y.-W. Huang, S.-H. Liao, Y.-L. Huang, H.-W. Tien, T.-M. Lee, and K.-C. Chiou, Carbon 48, 592 (2010).CrossRefGoogle Scholar
  28. 28.
    F.H. Gojny, M.H.G. Wichmann, B. Fiedler, I.K. Kinloch, W. Bauhofer, A.W. Windle, and K. Schulte, Polymer 47, 2036 (2006).CrossRefGoogle Scholar
  29. 29.
    B.-W. Kim, S.-H. Park, R.S. Kapadia, and P.R. Bandaru, Appl. Phys. Lett. 102, 243105 (2013).CrossRefGoogle Scholar
  30. 30.
    D.G. Cahill, Rev. Sci. Instrum. 75, 5119 (2004).CrossRefGoogle Scholar
  31. 31.
    H. Zheng and K. Jaganandham, J. Electron. Materials 43, 320 (2014).CrossRefGoogle Scholar
  32. 32.
    K. Jaganandham, J. Vac. Sci. Technol. A 32, 051101 (2014).CrossRefGoogle Scholar
  33. 33.
    F. Deng, Q.-S. Zheng, L.-F. Wang, and C.-W. Nan, Appl. Phys. Lett. 90, 021914 (2007).CrossRefGoogle Scholar
  34. 34.
    J.O. Aguilar, J.R. Bautista Quijano, and F. Aviles, Exp. Polym. Lett. 4, 292 (2010).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2015

Authors and Affiliations

  1. 1.Materials Science and EngineeringNorth Carolina State UniversityRaleighUSA

Personalised recommendations