Journal of Electronic Materials

, Volume 44, Issue 5, pp 1311–1320 | Cite as

Effects of Lattice Relaxation on Composition and Morphology in Strained In x Ga1−x As y Sb1−y Epitaxial Layers

  • Charles Meyer
  • Nicholas Cole
  • Corey Matzat
  • Emily Cheng
  • Gregory Triplett


In x Ga1−x As y Sb1−y is an important semiconductor material for a variety of mid-infrared devices. Its tunable bandgap, adjustable lattice constant, and other material properties make it appealing for developing optoelectronic devices in the 2 μm to 4 μm region. In this work, we report on the mechanisms of strain relaxation in In x Ga1−x As y Sb1−y epitaxial layers with low arsenic and high indium concentrations grown on GaSb (100) substrates. Samples were grown via solid-source molecular beam epitaxy with indium mole fractions between x = 0.1 (0.7% lattice mismatch) and x = 0.4 (2.5% lattice mismatch), and arsenic mole fractions between y = 0 and y = 0.02. Sample thicknesses between 10 nm and 100 nm were produced in order to observe the progression of structure formation. Samples were monitored in situ via reflection high-energy electron diffraction and ex situ using scanning electron microscopy, energy-dispersive spectroscopy, Rutherford backscattering spectroscopy, backscattering Raman spectroscopy, and atomic force microscopy. Results suggest that strain relaxation occurs preferentially along the [011] direction, although some crosshatching is observed. A compositional gradient in the growth direction is also observed, suggesting preferential incorporation of gallium at strained interfaces in order to minimize strain energy.


InGaAsSb molecular beam epitaxy nanodashes compositional gradient strain relaxation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors would like to thank Robert Bedford of the Wright–Patterson Air Force Base, Sensors Directorate for his contributions to this effort. The authors would also like to thank Suchismita Guha for allowing access to the micro-Raman spectrometer. This work was funded Air Force Office of Scientific Research Young Investigator Program Grant Number FA9550-10-1-0482.


  1. 1.
    J. Basinski, D.J.E. Demars, and J.C. Woolley, J. Phys. C Solid State 7, 716 (1974).CrossRefGoogle Scholar
  2. 2.
    D.L. Rode, Phys. Rev. B 2, 4036 (1970).CrossRefGoogle Scholar
  3. 3.
    I. Vurgaftman, J. Meyer, and L. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001).CrossRefGoogle Scholar
  4. 4.
    R. Russell, G. Rossano, M. Chatelain, D. Lynch, T. Tessensohn, E. Abendroth, D. Kim, and P. Jenniskens, Earth Moon Planets 82–83, 439 (1998).CrossRefGoogle Scholar
  5. 5.
    F.E. Hanson, P.M. Poirier, E.J. Schimitschek, and M.A. Arbore, Proc. SPIE 4377, 155 (2001).CrossRefGoogle Scholar
  6. 6.
    E. Brown, P. Baldasaro, S. Burger, L. Danielson, D. DePoy, J. Dolatowski, P. Fourspring, G. Nichols, W. Topper, and T. Rahmlow, Status of Thermophotovoltaic Energy Conversion Technology at Lockheed Martin Corp, 2nd International Energy Conversion Engineering Conference, American Institute of Aeronautics and Astronautics (2004).Google Scholar
  7. 7.
    C.A. Wang, C.J. Vineis, H.K. Choi, M.K. Connors, R.K. Huang, L.R. Danielson, G. Nichols, G.W. Charache, D. Donetsky, S. Anikeev, and G. Belenky, AIP Conf. Proc., 653 (2003).Google Scholar
  8. 8.
    M.W. Dashiell, J.F. Beausang, H. Ehsani, G.J. Nichols, D.M. DePoy, L.R. Danielson, P. Talamo, K.D. Rahner, E.J. Brown, S.R. Burger, P.M. Fourspring, W.F. Topper, P.F. Baldasaro, C.A. Wang, R.K. Huang, M.K. Connors, G.W. Turner, Z.A. Shellenbarger, G. Taylor, L. Jizhong, R. Martinelli, D. Donetski, S. Anikeev, G.L. Belenky, and S. Luryi, IEEE Trans. Electron Dev. 53, 2879 (2006).CrossRefGoogle Scholar
  9. 9.
    S. Adachi, J. Appl. Phys. 61, 4869 (1987).CrossRefGoogle Scholar
  10. 10.
    M.J. Cherng, H.R. Jen, C.A. Larsen, G.B. Strigfellow, H. Lundt, and P.C. Taylor, J. Cryst. Growth 77, 408 (1986).CrossRefGoogle Scholar
  11. 11.
    C.A. Wang, Appl. Phys. Lett. 76, 2868 (2000).CrossRefGoogle Scholar
  12. 12.
    A. Yildirim and J.P. Prineas, J. Vac. Sci. Technol. B 30, 02B104 (2012).CrossRefGoogle Scholar
  13. 13.
    A. Yildirim and J.P. Prineas, J. Vac. Sci Technol. B 31, 03C108 (2013).CrossRefGoogle Scholar
  14. 14.
    P. Hovington, D. Drouin, and R. Gauvin, Scanning 19, 1 (1997).CrossRefGoogle Scholar
  15. 15.
    F.-M. Liu, T.-M. Wang, and L.-D. Zhang, Mater. Res. Bull. 37, 1093 (2002).CrossRefGoogle Scholar
  16. 16.
    F.-M. Liu, L.-D. Zhang, M.J. Zheng, and G.H. Li, Appl. Surf. Sci. 158, 281 (2000).CrossRefGoogle Scholar
  17. 17.
    K. Kakimoto and T. Katoda, Appl. Phys. Lett. 40, 826 (1982).CrossRefGoogle Scholar
  18. 18.
    J. Díaz-Reyes, E. López-Cruz, J.G. Mendoza-Álvarez, and S. Jiménez-Sandoval, J. Appl. Phys. 100, 123503 (2006).CrossRefGoogle Scholar
  19. 19.
    I. Sela, I.H. Campbell, B.K. Laurich, D.L. Smith, L.A. Samoska, C.R. Bolognesi, A.C. Gossard, and H. Kroemer, J.␣Appl. Phys. 70, 5608 (1991).CrossRefGoogle Scholar
  20. 20.
    P.M.J. Marée, J.C. Barbour, J.F. van der Veen, K.L. Kavanagh, C.W.T. Bulle-Lieuwma, and M.P.A. Viegers, J.␣Appl. Phys. 62, 4413 (1987).CrossRefGoogle Scholar
  21. 21.
    A.G. Norman, R.M. France, W.E. McMahon, J.F. Geisz, and M.J. Romero, J. Phys. 471, 012006 (2013).Google Scholar
  22. 22.
    C. Meyer, J. Grayer, D. Paterson, E. Cheng, and G. Triplett, Proc. SPIE 8980, 24 (2014).Google Scholar
  23. 23.
    T. Spila, P. Desjardins, J. D’Arcy-Gall, R.D. Twesten, and J.E. Greene, J. Appl. Phys. 93, 1918 (2003).CrossRefGoogle Scholar
  24. 24.
    A.M. Andrews, J.S. Speck, A.E. Romanov, M. Bobeth, and W. Pompe, J. Appl. Phys. 91, 1933 (2002).CrossRefGoogle Scholar
  25. 25.
    J.W.P. Hsu, E.A. Fitzgerald, Y.H. Xie, P.J. Silverman, and M.J. Cardillo, Appl. Phys. Lett. 61, 1293 (1992).CrossRefGoogle Scholar
  26. 26.
    M.A. Lutz, R.M. Feenstra, F.K. LeGoues, P.M. Mooney, and J.O. Chu, Appl. Phys. Lett. 66, 724 (1995).CrossRefGoogle Scholar
  27. 27.
    A.M. Andrews, R. LeSar, M.A. Kerner, J.S. Speck, A.E. Romanov, A.L. Kolesnikova, M. Bobeth, and W. Pompe, J. Appl. Phys. 95, 6032 (2004).Google Scholar
  28. 28.
    S. Pereira, M.R. Correia, E. Pereira, K.P. O’Donnell, C. Trager-Cowan, F. Sweeney, and E. Alves, Phys. Rev. B 64, (2001).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2015

Authors and Affiliations

  • Charles Meyer
    • 1
  • Nicholas Cole
    • 1
  • Corey Matzat
    • 1
  • Emily Cheng
    • 1
  • Gregory Triplett
    • 1
  1. 1.Department of Electrical and Computer EngineeringUniversity of MissouriColumbiaUSA

Personalised recommendations