Advertisement

Journal of Electronic Materials

, Volume 44, Issue 4, pp 1220–1237 | Cite as

Hygro-thermo-mechanical Behavior of Adhesive-Based Flexible Chip-on-Flex Packaging

  • Hsien-Chie ChengEmail author
  • Ho-Hsiang Huang
  • Wen-Hwa ChenEmail author
  • Su-Tsai Lu
Article

Abstract

Although adhesive-based chip-on-flex (COF) packaging technologies have many advantageous features, such as flexibility and compatibility with standard semiconductor and microelectronics packaging processes, the low hygro-thermal resistance leads to reliability concerns. Thus, finite element (FE) modeling and experimental testing have been used to investigate the effects of temperature and humidity conditions on the hygro-thermo-mechanical behavior of a thin flexible anisotropic conductive adhesive (ACA)-based COF packaging technology. The investigation starts from process modeling of the thermo-mechanical behavior of the technology during the ACA bonding process. The validity of the process modeling is demonstrated by temperature and warpage experiments. Furthermore, three-dimensional (3-D) transient moisture diffusion FE analysis through a thermal–moisture analogy based on the “wetness” technique is performed to evaluate the moisture distribution, in which the moisture properties of the polyimide (PI) substrate are obtained through a moisture absorption experiment. Then, the effect of the moisture properties of the ACA adhesive and PI substrate on the moisture diffusion behavior is examined. Finally, following process modeling, 3-D hygro-thermo-mechanical FE analysis under a constant temperature and humidity condition is undertaken to assess the influence of hygro-thermal aging and stress relaxation of the ACA adhesive on the long-term contact performance of the interconnects.

Keywords

Chip-on-flex anisotropic conductive adhesive (ACA) finite element modeling transient moisture diffusion hygro-thermo-mechanical analysis hygro-thermal aging 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The work is partially supported by the Ministry of Science and Technology, Taiwan, ROC, under Grants MOST 103-2221-E-035-024-MY3 and NSC 101-2221-E-007-009-MY3.

References

  1. 1.
    D. Mao, M.A. Quevedo-Lopez, H.N. Alshareef, H. Stiegler, and B.E. Gnade, Org. Electron. 11, 925 (2010).CrossRefGoogle Scholar
  2. 2.
    Y.T. Hong, Z.Q. He, N.S. Lennhoff, D.A. Banach, and J. Kanicki, J. Electron. Mater. 33, 312 (2004).CrossRefGoogle Scholar
  3. 3.
    K. Chen, R. Zenner, M. Arneson, and D. Mountain, Ultra-thin electronic device package, in IEEE Electronic Components and Technology Conference, 1999, pp. 657–662.Google Scholar
  4. 4.
    M.J. Yim, J.-S. Hwang, J.G. Kim, J.Y. Ahn, H.J. Kim, W. Kwon, and K.-W. Paik, J. Electron. Mater. 33, 76 (2004).CrossRefGoogle Scholar
  5. 5.
    H.-C. Cheng, C.-L. Ho, W.-C. Chen, and S.-S. Yang, IEEE Trans. Compon. Packag. Technol. 29, 577 (2006).CrossRefGoogle Scholar
  6. 6.
    E.H. Wong, R. Rajoo, S.W. Koh, and T.B. Lim, J. Electron. Packag. 124, 122 (2002).CrossRefGoogle Scholar
  7. 7.
    M.-Y. Tsai, C.-Y. Huang, C.-Y. Chiang, W.-C. Chen, and S.-S. Yang, IEEE Trans. Compon. Packag. Technol. 30, 517 (2007).CrossRefGoogle Scholar
  8. 8.
    T. Ikeda, W.-K. Kim, and N. Miyazaki, IEEE Trans. Compon. Packag. Technol. 29, 551 (2006).CrossRefGoogle Scholar
  9. 9.
    J.-Y. Yoon, I. Kim, and S.-B. Lee, J. Electron. Packag. 131, 021012-1 (2009).CrossRefGoogle Scholar
  10. 10.
    W.H. Zhu, S.L. Gan, and C.L. Toh, Mechanical Properties of Molding Compounds (MCs) under Different Moisture Conditions and in a Wide Temperature Range, in 5th International Conference on Thermal and Mechanical Simulation and Experiments in Micro-electronics and Micro-Systems, 2004, pp. 593−598Google Scholar
  11. 11.
    D.C.C. Lam and J. Wang, J. Electron. Mater. 36, 226 (2007).CrossRefGoogle Scholar
  12. 12.
    I.L. Chen, Correlation Between the Viscoelastic Properties of Anisotropic Conductive Adhesive and Reliability of Chip-on-Flex, Master Thesis, Department of Power Mechanical Engineering, National Tsing Hua University, Taiwan, 2009. (in Chinese)Google Scholar
  13. 13.
    L.K. Teh, M. Teo, E. Anto, C.C. Wong, S.G. Mhaisalkar, P.S. Teo, and E.H. Wang, IEEE Trans. Compon. Packag. Technol. 28, 506 (2005).CrossRefGoogle Scholar
  14. 14.
    C.W. Tan, Y.W. Chiu, and Y.C. Chan, Mater. Sci. Eng. B 98, 255 (2003).CrossRefGoogle Scholar
  15. 15.
    K.N. Chiang, C.W. Chang, and J.D. Lin, J. Electron. Packag. 123, 331 (2001).CrossRefGoogle Scholar
  16. 16.
    H.-C. Cheng, C.-H. Ma, C.-F. Yu, S.-T. Lu, and W.-H. Chen, Comput. Mater. Contin. 38, 129 (2013).Google Scholar
  17. 17.
    S. Yoon, B. Han, and Z. Wang, J. Electron. Packag. 129, 421 (2007).CrossRefGoogle Scholar
  18. 18.
    M.-Y. Tsai, C.Y. Wu, C.Y. Huang, and S.S. Yang, IEEE Trans. Adv. Packag. 31, 454 (2008).CrossRefGoogle Scholar
  19. 19.
    K.M. Chen, C.Y. Wu, C.H. Wang, H.-C. Cheng, and N.C. Huang, J. Electron. Mater. 43, 4229 (2014).CrossRefGoogle Scholar
  20. 20.
    C.H. Shen and G.S. Springer, J. Compos. Mater. 10, 2 (1976).CrossRefGoogle Scholar
  21. 21.
    A.C. Loos and G.S. Springer, J. Compos. Mater. 13, 131 (1979).CrossRefGoogle Scholar
  22. 22.
    E.H. Wong and R. Rajoo, Microelectron. Reliab. 43, 2087 (2003).CrossRefGoogle Scholar
  23. 23.
    JIS K 7209, Testing Methods for Water and Boiling Water Absorption of Plastics. Japanese Standards Association, 1984.Google Scholar
  24. 24.
    SEMI G66-96, Test Method for the Measurement of Water absorption Characteristics for Semiconductor Molding Compounds. Semiconductor Equipment and Materials International, 1996.Google Scholar
  25. 25.
    M.L. Williams, R.F. Landel, and J.D. Ferry, J. Am. Chem. Soc. 77, 3701 (1955).CrossRefGoogle Scholar
  26. 26.
    D.M. Espino, D.E.T. Shepherd, and D.W.L. Hukins, J. Mech. 29, N9 (2013).CrossRefGoogle Scholar
  27. 27.
    C.Y. Cao, Q.-H. Qin, and A.B. Yu, J. Mech. 29, 661 (2013).CrossRefGoogle Scholar
  28. 28.
    G.N. Ellison, Thermal Computations for Electronic Equipment (Malabar, FL: R.E. Krieger, 1989), p. 25.Google Scholar
  29. 29.
    H.-C. Cheng, W.-R. Ciou, W.-H. Chen, J.-L. Kuo, H.-C. Lu, and R.-B. Wu, Appl. Therm. Eng. 53, 78 (2013).CrossRefGoogle Scholar
  30. 30.
    W.S. Kwon and K.W. Paik, J. Appl. Polym. Sci. 93, 2634 (2004).CrossRefGoogle Scholar
  31. 31.
    M. Teo, S.G. Mhaisalkar, E.H. Wong, P.S. Teo, C.C. Wong, K. Ong, C.F. Goh, and L.K. Teh, IEEE Trans. Compon. Packag. Technol. 28, 157 (2005).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2015

Authors and Affiliations

  1. 1.Department of Aerospace and Systems EngineeringFeng Chia UniversityTaichungTaiwan
  2. 2.Department of Power Mechanical EngineeringNational Tsing Hua UniversityHsinchuTaiwan
  3. 3.Electronics and Optoelectronics Research LaboratoriesITRIHsinchuTaiwan

Personalised recommendations