Journal of Electronic Materials

, Volume 44, Issue 3, pp 874–885 | Cite as

Effect of Substrate Temperature on the Properties of Sprayed WO3 Thin Films Using Peroxotungstic Acid and Ammonium Tungstate: A Comparative Study

  • V. V. Ganbavle
  • J. H. Kim
  • K. Y. Rajpure


A comparative study on the physicochemical properties of tungsten oxide (WO3) thin films synthesized using peroxotungstic acid (PTA) and ammonium tungstate (AT) by simple spray pyrolysis technique is reported. X-ray diffraction patterns show that the films deposited using both the precursors are polycrystalline with monoclinic crystal structure. The x-ray photoelectron spectroscopy studies confirm that the films are sub-stoichiometric with O/W ratios of 2.93 and 2.87, respectively, for typical PTA and AT films. Tungsten (W) exists in two chemical states, 5+ and 6+. Scanning electron microscopy images show the uniform and dense network of wires in PTA films, while the films deposited using AT possess a porous structure with small grains. Electrical and dielectric studies show that films are highly resistive and possess high dielectric constant. The near ultra-violet, blue, green and weak red emissions due to defects were observed in the photoluminescence studies. Properties of the WO3 thin films reported here are suitable for gas sensor applications. Films deposited using PTA are more functional than those deposited using AT.


Thin films spray pyrolysis WO3 photoluminescence x-ray photoelectron spectroscopy (XPS) electrical properties 



One of the authors, Mr. V.V. Ganbavle is very grateful to UGC, New Delhi, for providing financial support through a UGC-BSR junior research fellowship. This work is partly supported by UGC through financial support under a major research project entitled “Photocatalytic degradation of waste water using sprayed tungsten trioxide (WO3) thin films”, No. 41-869/2012. We acknowledge D. Haranath, CSIR-NPL, New Delhi, for providing PL measurements, and Michael Neumann-Spallart, CNRS France, for discussions and suggestions.


  1. 1.
    M. Zadsar, H.R. Fallah, M.H. Mahmoodzadeh, and S.V. Tabatabaei, J. Lumin. 132, 992 (2012).CrossRefGoogle Scholar
  2. 2.
    A. Boudiba, P. Roussel, C. Zhang, M.G. Olivier, R. Snyders, and M. Debliquy, Sensors Actuat. B 187, 84 (2013).CrossRefGoogle Scholar
  3. 3.
    M. Ranjbar, S. Fardindoost, S.M. Mahdavi, A. Iraji zad, and N. Tahmasebi, Sol. Energ. Mat. Sol. C 95, 2335 (2011).CrossRefGoogle Scholar
  4. 4.
    W. Chu and Y.F. Rao, Chemosphere 86, 1079 (2012).CrossRefGoogle Scholar
  5. 5.
    M.Z. Ahmad, A.Z. Sadek, M.H. Yaacob, D.P. Anderson, G. Matthews, V.B. Golovko, and W. Wlodarski, Sensors Actuat. B 179, 125 (2013).CrossRefGoogle Scholar
  6. 6.
    J.M.O. Leon, D.R. Acosta, U. Pal, and L. Castaneda, Electrochim. Acta 56, 2599 (2011).CrossRefGoogle Scholar
  7. 7.
    R.A. Batchelor, M.S. Burdis, and J.R. Siddle, J. Electrochem. Soc. 143, 1050 (1996).CrossRefGoogle Scholar
  8. 8.
    O. Bohnke, C. Bohnke, A. Donnadieu, and D. Davazoglou, J.␣Appl. Electrochem. 18, 447 (1988).CrossRefGoogle Scholar
  9. 9.
    P.R. Patil, S.H. Pawar, and P.S. Patil, Solid State Ionics 136, 505 (2000).CrossRefGoogle Scholar
  10. 10.
    J.H. Yun, B.Y. Kim, and S.W. Rhee, Thin Solid Films 312, 259 (1998).CrossRefGoogle Scholar
  11. 11.
    J.D. Musgraves, N. Carlie, J. Hu, L. Petit, A. Agarwal, L.C. Kimerling, and K.A. Richardson, Acta Mater. 59, 5032 (2011).CrossRefGoogle Scholar
  12. 12.
    B.W. Mwakikunga, E.S. Haddad, A. Forbes, and C. Arendse, Phys. Status Solidi A 205, 150 (2008).CrossRefGoogle Scholar
  13. 13.
    C.Y. Kim, S.G. Cho, S. Parka, and D.K. Choi, J. Ceram. Process. Res. 10, 851 (2009).Google Scholar
  14. 14.
    D.E. Williams and K.F.E. Pratt, J. Chem. Soc. Faraday Trans. 94, 3493 (1998).CrossRefGoogle Scholar
  15. 15.
    S. Kirkpatrick, Rev. Mod. Phys. 45, 574 (1973).CrossRefGoogle Scholar
  16. 16.
    J. Tamaki, Z. Zhang, K. Fujimori, M. Akiyama, T. Harada, N. Miura, and N. Yamazoe, J. Electrochem. Soc. 141, 2207 (1994).CrossRefGoogle Scholar
  17. 17.
    X. Wang, S.S. Yee, and W.P. Carey, Sensors Actuat. B 24, 454 (1995).CrossRefGoogle Scholar
  18. 18.
    Y. Qin, F. Wang, W. Shen, and M. Hu, J. Alloy. Compd. 540, 21 (2012).CrossRefGoogle Scholar
  19. 19.
    B. Zhang, J. Liu, S. Guan, Y. Wan, Y. Zhang, and R. Chen, J. Alloy. Compd. 439, 55 (2007).CrossRefGoogle Scholar
  20. 20.
    N.D. Hoa, V.V. Quang, D. Kim, and N.V. Hieu, J. Alloy. Compd. 549, 260 (2013).CrossRefGoogle Scholar
  21. 21.
    Y. Qin, X. Li, F. Wang, and M. Hu, J. Alloy Compd. 509, 8401 (2011).CrossRefGoogle Scholar
  22. 22.
    P.R. Patil and P.S. Patil, Thin Solid Films 382, 13 (2001).CrossRefGoogle Scholar
  23. 23.
    B.D. Cullity, Elements of X-ray diffraction, 3rd ed. (Boston: Addison-Wesley Publishing Inc., 1956), pp. 261–262.Google Scholar
  24. 24.
    P.S. Prevey, J. Therm. Spray Technol. 9, 369 (2000).CrossRefGoogle Scholar
  25. 25.
    S. Thanikaikarasan, T. Mahalingam, A. Kathalingam, Y.D. Kim, and T. Kim, Vacuum 83, 1066 (2009).CrossRefGoogle Scholar
  26. 26.
    S.S. Shinde and K.Y. Rajpure, J. Alloy. Compd. 509, 4603 (2011).CrossRefGoogle Scholar
  27. 27.
    R. Nyholm, A. Berndtsson, and N. Martensson, J. Phys. C 13, L1091 (1980).CrossRefGoogle Scholar
  28. 28.
    W. Grunert, E.S. Spiro, R. Feldhaus, K. Anders, G.V. Antoshin, and K.M. Minachev, J. Catal. 107, 522 (1987).CrossRefGoogle Scholar
  29. 29.
    I.M. Szilagyi, I. Sajo, P. Kiraly, G. Tarkanyi, A.L. Toth, A. Szabo, K. Varga-Josepovits, J. Madarasz, and G. Pokol, J.␣Therm. Anal. Calorim. 98, 707 (2009).CrossRefGoogle Scholar
  30. 30.
    A.R. Babar, S.S. Shinde, A.V. Moholkar, C.H. Bhosale, J.H. Kim, and K.Y. Rajpure, J. Alloy Compd. 509, 3108 (2011).CrossRefGoogle Scholar
  31. 31.
    A. Subrahmanyam and A. Karuppasamy, Sol. Energ. Mat. Sol. C 91, 266 (2007).CrossRefGoogle Scholar
  32. 32.
    R.S. Vemuri, M.H. Engelhard, and C.V. Ramana, Appl. Mater. Interfaces 4, 1371 (2012).CrossRefGoogle Scholar
  33. 33.
    E. Orhan, M.A. Santos, M.A. Maurera, F.M. Pontes, C.O. Paiva-Santos, A.G. Souza, J.A. Varela, P.S. Pizani, and E. Longo, Chem. Phys. 312, 1 (2005).CrossRefGoogle Scholar
  34. 34.
    SZh Karazhanov, Y. Zhang, A. Mascarenhas, S. Deb, and L.W. Wang, Solid State Ionics 165, 43 (2003).CrossRefGoogle Scholar
  35. 35.
    C. Shi, Y. Wei, X. Yang, D. Zhou, C. Guo, J. Liao, and H. Tang, Chem. Phys. Lett. 328, 1 (2000).CrossRefGoogle Scholar
  36. 36.
    V.S. Sawant, S.S. Shinde, R.J. Deokate, C.H. Bhosale, B.K. Chougule, and K.Y. Rajpure, Appl. Surf. Sci. 255, 6675 (2009).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2015

Authors and Affiliations

  1. 1.Electrochemical Materials Laboratory, Department of PhysicsShivaji UniversityKolhapurIndia
  2. 2.Department of Materials Science and EngineeringChonnam National UniversityGwangjuSouth Korea

Personalised recommendations