Advertisement

Journal of Electronic Materials

, Volume 44, Issue 6, pp 1963–1966 | Cite as

Nanostructured CoSi Obtained by Spark Plasma Sintering

  • Marco LonghinEmail author
  • Romain Viennois
  • Didier Ravot
  • Jean-Jacques Robin
  • Benjamin Villeroy
  • Jean-Baptiste Vaney
  • Christophe Candolfi
  • Bertrand Lenoir
  • Philippe Papet
Article

Abstract

Cobalt monosilicide is a cheap, environmentally friendly thermoelectric material for medium temperatures (200–700°C). While its power factor is similar to the state-of-the-art thermoelectric materials, its thermal conductivity is too large to reach high ZT values. Nanostructuring might be an interesting strategy to reduce the phonon mean free path thereby improving the thermoelectric performance. In this paper, we report on a 35% reduction of the thermal conductivity of n-type CoSi by a nanostructuring approach. CoSi nanostructured powders were synthesized by arc melting, followed by 4 h mechanical milling. By optimizing the spark plasma sintering thermal and pressure cycle, pellets with 5–10% porosity were obtained. During sintering, a small amount of Co2Si extra phase appeared and grains coarsened. After sintering, the pellets remained nanostructured, with an averaged grain size of 70 nm. The reduction of thermal conductivity is ascribed to a decrease in both the electronic and lattice contributions. The former is directly related to a decrease in the electrical conductivity, which appears to be the limiting factor preventing nanostructured CoSi from reaching enhanced thermoelectric performances.

Keywords

Nanostructuring thermoelectricity Seebeck spark plasma sintering (SPS) thermal conductivity cobalt silicide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Patyk, J. Electron. Mater. 39, 2023 (2010).CrossRefGoogle Scholar
  2. 2.
    M.I. Fedorov and V.K. Zaitsev, Thermoelectrics Handbook. Macro to Nano, ed. D.M. Rowe (Boca Raton, FL: CRC Press, 2005), p. 31.1.Google Scholar
  3. 3.
    G.T. Alekseeva, V.K. Zaitsev, A.V. Petrov, V.I. Tarasov, and M.I. Fedorov, Fiz. Tverd. Tela 23, 2888 (1981).Google Scholar
  4. 4.
    E.N. Nikitin, P.V. Tamarin, and V.I. Tarasov, Phys. Solid State 11, 2002 (1970).Google Scholar
  5. 5.
    N. Satyala and D. Vashaee, Appl. Phys. Lett. 100, 073107 (2012).CrossRefGoogle Scholar
  6. 6.
    S.K. Bux, R.G. Blair, P.K. Gogna, H. Lee, G. Chen, M.S. Dresselhaus, R.B. Kaner, and J.-P. Fleurial, Adv. Funct. Mater. 19, 2445 (2009).CrossRefGoogle Scholar
  7. 7.
    S. Karuppaiah, M. Beaudhuin, and R. Viennois, J. Solid State Chem. 199, 90 (2013).CrossRefGoogle Scholar
  8. 8.
    W.H. Luo, H. Li, Y.G. Yan, Z.B. Lin, X.F. Tang, Q.J. Zhang, and C. Uher, Intermetallics 19, 404 (2011).CrossRefGoogle Scholar
  9. 9.
    M. Longhin, R. Viennois, D. Ravot, J.-J. Robin, and P. Papet, Solid State Sci. 38, 129 (2014).CrossRefGoogle Scholar
  10. 10.
    R. Orru, R. Licheri, A.M. Locci, A. Cincotti, and G.C. Cao, Mater. Sci. Eng. R-Rep. 63, 127 (2009).CrossRefGoogle Scholar
  11. 11.
    Z.A. Munir, U. Anselmi-Tamburini, and M. Ohyanagi, J. Mater. Sci. 41, 763 (2006).CrossRefGoogle Scholar
  12. 12.
    G.K. Williamson and W.H. Hall, Acta Metall. 1, 22 (1953).CrossRefGoogle Scholar
  13. 13.
    C. Merlet, Mikrochim. Acta 114, 363 (1994).CrossRefGoogle Scholar
  14. 14.
    C.S. Lue, Y.K. Kuo, C.L. Huang, and W.J. Lai, Phys. Rev. B 69, 125111 (2004).CrossRefGoogle Scholar
  15. 15.
    J.C.Y. Koh and A. Fortini, Int. J. Heat Mass Transf. 16, 2013 (1973).CrossRefGoogle Scholar
  16. 16.
    C.D. Lien, M. Finetti, M.A. Nicolet, and S.S. Lau, J. Electron. Mater. 13, 95 (1984).CrossRefGoogle Scholar
  17. 17.
    H. Sun, D.T. Morelli, M.J. Kirkham, H.M. Meyer III, and E. Lara-Curzio, J. Appl. Phys. 110, 123711 (2011).CrossRefGoogle Scholar
  18. 18.
    E. Alleno (ICMPE, Paris11) et’al., Rev. Sci. Instrum. 2014, vol. Under review.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2015

Authors and Affiliations

  • Marco Longhin
    • 1
    • 2
    Email author
  • Romain Viennois
    • 1
  • Didier Ravot
    • 1
  • Jean-Jacques Robin
    • 2
  • Benjamin Villeroy
    • 3
  • Jean-Baptiste Vaney
    • 4
  • Christophe Candolfi
    • 4
  • Bertrand Lenoir
    • 4
  • Philippe Papet
    • 1
  1. 1.C2M Institut Charles Gerhardt, Université Montpellier 2, UMR 5253MontpellierFrance
  2. 2.IAM, Institut Charles Gerhardt, Université Montpellier 2, UMR 5253MontpellierFrance
  3. 3.Chimie Métallurgique des Terres Rares, ICMPE, UMR 7182ThiaisFrance
  4. 4.Institut Jean Lamour, Université de Lorraine, UMR 7198 CNRSNancyFrance

Personalised recommendations