Journal of Electronic Materials

, Volume 44, Issue 4, pp 1116–1127 | Cite as

Solder Flux Residues and Humidity-Related Failures in Electronics: Relative Effects of Weak Organic Acids Used in No-Clean Flux Systems

  • Vadimas VerdingovasEmail author
  • Morten Stendahl Jellesen
  • Rajan Ambat


This paper presents the results of humidity testing of weak organic acids (WOAs), namely adipic, succinic, glutaric, dl-malic, and palmitic acids, which are commonly used as activators in no-clean solder fluxes. The study was performed under humidity conditions varying from 60% relative humidity (RH) to ∼99%RH at 25°C. The following parameters were used for characterization of WOAs: mass gain due to water adsorption and deliquescence of the WOA (by quartz crystal microbalance), resistivity of the water layer formed on the printed circuit board (by impedance spectroscopy), and leakage current measured using the surface insulation resistance pattern in the potential range from 0 V to 10 V. The combined results indicate the importance of the WOA chemical structure for the water adsorption and therefore conductive water layer formation on the printed circuit board assembly (PCBA). A substantial increase of leakage currents and probability of electrochemical migration was observed at humidity levels above the RH corresponding to the deliquescence point of WOAs present as contaminants on the printed circuit boards. The results suggest that use of solder fluxes with WOAs having higher deliquescence point could improve the reliability of electronics operating under circumstances in which exposure to high humidity is likely to occur.


Flux residue surface insulation resistance leakage current corrosion reliability of electronics impedance spectroscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Montreal Protocol on Substances that Deplete the Ozone Layer. United Nations Environment Programme (1987).Google Scholar
  2. 2.
    W.M. Haynes and D.R. Lide, CRC Handbook of Chemistry and Physics, 94th ed. (Boca Raton: CRC Press, 2013), p. 2668.Google Scholar
  3. 3.
    J.E. Sohn and U. Ray, Circuit World 21, 22 (1994).CrossRefGoogle Scholar
  4. 4.
    M.S. Jellesen, D. Minzari, U. Rathinavelu, P. Møller, and R. Ambat, Eng. Fail. Anal. 17, 1263 (2010).CrossRefGoogle Scholar
  5. 5.
    D. Geiger and D. Shangguan, Solder. Surf. Mt. Technol. 17, 27 (2005).CrossRefGoogle Scholar
  6. 6.
    L.J. Turbini, G.B. Freeman, M.H. Smith, J.D. Finney, R.D. Boswell, and J.F. Lane, Solder. Surf. Mt. Technol. 3, 24 (1991).CrossRefGoogle Scholar
  7. 7.
    C. Puechagut, A. Laügt, E. Guéné, and R. Anisko, Solder Paste Residue Corrosivity Assessment: Bono Test, in IPC APEX EXPO Technical Conference (2010), vol. 2, p. 1336.Google Scholar
  8. 8.
    Y. Zhou, L.J. Turbini, D. Ramjattan, B. Christian, and M. Pritzker, J. Electron. Mater. 42, 3609 (2013).CrossRefGoogle Scholar
  9. 9.
    J.R. White, IBM J. Res. Dev. 37, 243 (1993).CrossRefGoogle Scholar
  10. 10.
    J.C. Galvan, J.M. Bastidas, and S. Feliu, Weld. J. 75, 366 (1996).Google Scholar
  11. 11.
    J. Guy and M. Fredrickson, NEPCON WEST 3, 1270 (1997).Google Scholar
  12. 12.
    N.M. Amin and A.M. Seitz, NEPCON WEST 2, 845 (1999).Google Scholar
  13. 13.
    L.C. Zou and C. Hunt, J. Electrochem. Soc. 156, C8 (2009).CrossRefGoogle Scholar
  14. 14.
    C. Hunt and L. Zou, Solder. Surf. Mt. Technol. 11, 36 (1999).CrossRefGoogle Scholar
  15. 15.
    S. Zhan, M.H. Azarian, and M. Pecht, IEEE Trans. Device Mater. Reliab. 8, 426 (2008).CrossRefGoogle Scholar
  16. 16.
    K.G. Schmitt-Thomas and C. Schmidt, Solder. Surf. Mt. Technol. 3, 4 (1994).CrossRefGoogle Scholar
  17. 17.
    Peter. Biocca, Flux chemistries and thermal profiling considerations in SMT assembly. National Electronic Packaging and Production Conference-Proceedings of the Technical Program (West and East) 2, 971 (1999).Google Scholar
  18. 18.
    K.S. Hansen, M.S. Jellesen, P. Moller, P.J.S. Westermann, and R. Ambat, Effect of Solder Flux Residues on Corrosion of Electronics, in Annual reliability and maintainability symposium (2009), p. 503.Google Scholar
  19. 19.
    B.A. Smith and L.J. Turbini, J. Electron. Mater. 28, 1299 (1999).CrossRefGoogle Scholar
  20. 20.
    V. Verdingovas, M.S. Jellesen, and R. Ambat, IEEE Trans. Device Mater. Reliab. 14, 42 (2014).CrossRefGoogle Scholar
  21. 21.
    IPC-9201, Surface Insulation Resistance Handbook (Northbrook: IPC, 1996).Google Scholar
  22. 22.
    G. Sauerbrey, Z. Phys. 155, 206 (1959).CrossRefGoogle Scholar
  23. 23.
    K.M. Adams, J.E. Anderson, and Y.B. Graves, Circuit World 20, 41 (1994).CrossRefGoogle Scholar
  24. 24.
    C. Peng, M.N. Chan, and C.K. Chan, Environ. Sci. Technol. 35, 4495 (2001).CrossRefGoogle Scholar
  25. 25.
    P. Saxena and L.M. Hildemann, Environ. Sci. Technol. 31, 3318 (1997).CrossRefGoogle Scholar
  26. 26.
    C. Cruz and S. Pandis, Environ. Sci. Technol. 34, 4313 (2000).CrossRefGoogle Scholar
  27. 27.
    A. Apelblat, M. Dov, J. Wisniak, and J. Zabicky, J. Chem. Thermodyn. 27, 35 (1995).CrossRefGoogle Scholar
  28. 28.
    M.E. Orazem and B. Tribollet, Electrochemical Impedance Spectroscopy (Hoboken: Wiley, 2008), p. 524.CrossRefGoogle Scholar
  29. 29.
    E. Barsukov and J. Ross Macdonald, Impedance Spectroscopy Theory, Experiment, and Applications (Hoboken: Wiley, 2005), p. 595.CrossRefGoogle Scholar
  30. 30.
    O. Thomas, M. Wickham, and C. Hunt, Circuit World 38, 68 (2012).CrossRefGoogle Scholar
  31. 31.
    H. Conseil, M.S. Jellesen and R. Ambat, Solder. Surf. Mt. Technol. 26, 194 (2014).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2015

Authors and Affiliations

  • Vadimas Verdingovas
    • 1
    Email author
  • Morten Stendahl Jellesen
    • 1
  • Rajan Ambat
    • 1
  1. 1.Materials and Surface Engineering, Department of Mechanical EngineeringTechnical University of DenmarkLyngbyDenmark

Personalised recommendations