Journal of Electronic Materials

, Volume 44, Issue 6, pp 1884–1889 | Cite as

Thermoelectric Generators from AgBiTe and AgSbTe Thin Films Modified by High-Energy Beam

  • S. BudakEmail author
  • S. Guner
  • C. Muntele
  • D. Ila


The ternary chalcogenides AgBiTe2 and AgSbTe2 belong to the family of semiconductors with disordered NaCl cubic structure in which Ag and Sb occupy metal sublattices. Both compounds are very interesting due to their thermoelectric properties. We have grown single-layer AgBiTe and AgSbTe thin films on silicon (Si) and fused silica (Suprasil) substrates using electron beam deposition. High-energy (MeV) Si-ion bombardment was performed on the thin-film samples at five different fluences between 5 × 1013 ions/cm2 and 7 × 1015 ions/cm2. We have measured the thermoelectric efficiency (figure of merit, ZT) of the fabricated thermoelectric devices by measuring the cross-plane thermal conductivity using the third-harmonic (3ω) method, the cross-plane Seebeck coefficient, and the in-plane electrical conductivity using the van der Pauw method before and after MeV Si-ion bombardment. Rutherford backscattering spectrometry and the Rutherford Universal Manipulation Program (RUMP) simulation package were used to analyze the elemental composition and thickness of the deposited materials on the substrates. The RUMP simulation gave thicknesses for the AgBiTe and AgSbTe thin films of 270 nm and 188 nm, respectively. The figure of merit for AgBiTe started to decrease from the value of 0.37 for the virgin sample after bombardment. We saw similar decreasing behavior for the AgSbTe thin-film system. The figure of merit for AgSbTe started to decrease from the value of 0.88 for the virgin sample after bombardment. MeV Si-ion bombardment caused changes in the thermoelectric properties of the thin films.


Thermoelectric properties thin films Rutherford backscattering spectrometry (RBS) figure of merit 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Research sponsored by Materials Research Laboratory (MRL), National Science Foundation under NSF-EPSCOR R-II-3 Grant No. EPS-1158862, DOD under Nanotechnology Infrastructure Development for Education and Research through the Army Research Office # W911 NF-08-1-0425, and DOD Army Research Office # W911 NF-12-1-0063, US Department of Energy National Nuclear Security Admin with Grant # DE-NA0001896 and Grant # DE-NA0002687, NSF-REU with Award # 1156137.


  1. 1.
    E. Lon, Science 321, 1457 (2008).CrossRefGoogle Scholar
  2. 2.
    Yasuhiro Hayakawa, et al., Thin Solid Films 519, 8532 (2011).CrossRefGoogle Scholar
  3. 3.
    S. Budak, S. Guner, C. Muntele, and D. Ila, Nucl. Instrum. Methods B 267, 1592 (2009).CrossRefGoogle Scholar
  4. 4.
    S. Budak, R. Parker, C. Smith, C. Muntele, K. Heidary, R.B. Johnson, and D. ILA, J. Intell. Mater. Syst. Struct. 24, 1357 (2013).CrossRefGoogle Scholar
  5. 5.
    L.M. Goncalves, J.G. Rocha, C. Couto, P. Alpuim, and J.H. Correia, Sens. Actuators A 145, 75 (2008).CrossRefGoogle Scholar
  6. 6.
    S.B. Riffat and X. Ma, Appl. Therm. Eng. 23, 913 (2003).CrossRefGoogle Scholar
  7. 7.
    H. Xi, L. Luo, and G. Fraisse, Renew. Sustain. Energy Rev. 11, 923 (2007).CrossRefGoogle Scholar
  8. 8.
    F. Xiao, C. Hangarter, B. Yoo, Y. Rheem, K.-H. Lee, and N.V. Myung, Electrochim. Acta 53, 8103 (2008).CrossRefGoogle Scholar
  9. 9.
    H.-J. Lee, H. Sung Park, S. Han, and J. Yup Kim, Thermochim. Acta 542, 57 (2012).CrossRefGoogle Scholar
  10. 10.
    X.K. Duan and Y.Z. Jiang, Thin Solid Films 519, 3007 (2011).CrossRefGoogle Scholar
  11. 11.
    C. Zhao-kun, F. Ping, Z. Zhuang-hao, L. Peng-juan, C. Tian-bao, C. Xing-min, L. Jing-ting, L. Guang-xing, and Z. Dong-ping, Appl. Surf. Sci. 280, 225 (2013).CrossRefGoogle Scholar
  12. 12.
    J. Navratil, I. Klichova, S. Karamazov, J. Sramkova, and J. Horak, J. Solid State Chem. 140, 29 (1998).CrossRefGoogle Scholar
  13. 13.
    X.Y. Huang, Z. Xu, and L.D. Chen, Solid State Commun. 130, 181 (2004).CrossRefGoogle Scholar
  14. 14.
    H. Ma, T. Su, P. Zhu, J. Guo, and X. Jia, J. Alloys Compd. 454, 415 (2008).CrossRefGoogle Scholar
  15. 15.
    T.C. Harman, P.J. Taylor, M.P. Walsh, and B.E. LaForge, Science 297, 2229 (2002).CrossRefGoogle Scholar
  16. 16.
    G.J. Snyder, The Electrochemical Society Interface, 17, 54 (Fall 2008).Google Scholar
  17. 17.
    R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, Nature 413, 597 (2001).CrossRefGoogle Scholar
  18. 18.
    B.C. Scales, Science 295, 1248 (2002).CrossRefGoogle Scholar
  19. 19.
    B.Y. Yoo, C.-K. Huang, J.R. Lim, J. Herman, M.A. Ryan, J.-P. Fleural, and N.V. Myung, Electrochim. Acta 50, 4371 (2005).CrossRefGoogle Scholar
  20. 20.
    A. Majumdar, Science 303, 777 (2004).CrossRefGoogle Scholar
  21. 21.
    C. Dames and G. Chen, Rev. Sci. Instrum. 76, 124902 (2005).CrossRefGoogle Scholar
  22. 22.
    J.F. Ziegler, J.P. Biersack, and U. Littmark, The Stopping Range of Ions in Solids (New York: Pergamon, 1985), 321 p.Google Scholar
  23. 23.
    W.K. Chu, J.W. Mayer, and M.-A. Nicolet, Backscattering Spectrometry (New York: Academic, 1978), pp. 89–122.CrossRefGoogle Scholar
  24. 24.
    L.R. Doolittle and M.O. Thompson, RUMP (Computer Graphics Service, 2002).Google Scholar
  25. 25.
    B. Zheng, S. Budak, R.L. Zimmerman, C. Muntele, B. Chhay, and D. ILA, Surf. Coat. Technol. 201, 8531 (2007).CrossRefGoogle Scholar
  26. 26.
    S. Budak, C.I. Muntele, R.A. Minamisawa, B. Chhay, and D. Ila, Nucl. Instrum. Methods B 261, 608 (2007).CrossRefGoogle Scholar
  27. 27.
    S. Budak, C. Muntele, B. Zheng, and D. Ila, Nucl. Instrum. Methods B 261, 1167 (2007).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2014

Authors and Affiliations

  1. 1.Department of Electrical Engineering and Computer ScienceAlabama A&M UniversityNormalUSA
  2. 2.Department of PhysicsFatih UniversityB. CekmeceTurkey
  3. 3.Cygnus Scientific ServicesHuntsvilleUSA
  4. 4.Department of PhysicsFayetteville State UniversityFayettevilleUSA

Personalised recommendations