Advertisement

Journal of Electronic Materials

, Volume 44, Issue 6, pp 1846–1850 | Cite as

Low-Temperature Transport Coefficients of Nanostructured Bi0.4Sb1.6Te3-Based Thermoelectric Materials Obtained by Spark Plasma Sintering

  • L. P. BulatEmail author
  • I. A. Drabkin
  • V. B. Osvenskii
  • Yu. N. Parkhomenko
  • D. A. Pshenay-Severin
  • A. I. Sorokin
  • A. A. Igonina
  • V. T. Bublik
  • M. G. Lavrentev
Article

Abstract

The temperature dependences of the electrical conductivity and Hall coefficient of spark-plasma-sintered nanostructured thermoelectric materials based on p-Bi0.4Sb1.6Te3 solid solution were measured in the range of 15 K to 300 K for a set of samples sintered at different temperatures from 300°C to 550°C. These data allow estimation of the mean free path of holes. Analysis of the transport coefficients together with information on the size and internal structure of the nanocrystalline grains indicates the important role of point defects in hole scattering, being more intensive for samples obtained at lower sintering temperature. The possible nature of the defects is discussed based on the transport and structural data.

Keywords

Nanostructured thermoelectrics thermoelectric efficiency bismuth telluride grain boundary scattering point defect scattering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Poudel, Q. Hao, Y. Ma, and Y. Lan, et al., Science 320, 634 (2008).CrossRefGoogle Scholar
  2. 2.
    L. Bulat, V. Osvensky, I. Drabkin, et al. Proceedings of the 6th European Conference on Thermoelectrics, I2-1 (2008).Google Scholar
  3. 3.
    W. Xie, X. Tang, Y. Yan, Q. Zhang, and T.M. Tritt, Appl. Phys. Lett. 94, 102111 (2009).CrossRefGoogle Scholar
  4. 4.
    L. Bulat, V. Bublik, and I. Drabkin, et al., J. Thermoelectr. 3, 67 (2009).Google Scholar
  5. 5.
    Y. Lan, B. Poudel, and Y. Ma, et al., Nano Lett. 9, 1419 (2009).CrossRefGoogle Scholar
  6. 6.
    L.P. Bulat, I.A. Drabkin, and V.V. Karataev, et al., J. Electron. Mater. 42, 2110 (2013).CrossRefGoogle Scholar
  7. 7.
    L.P. Bulat, I.A. Drabkin, and V.V. Karataev, et al., Phys. Solid State 52, 1836 (2010).CrossRefGoogle Scholar
  8. 8.
    L.P. Bulat, I.A. Drabkin, and V.V. Karataev, et al., Phys. Solid State 53, 29 (2011).CrossRefGoogle Scholar
  9. 9.
    I.A. Drabkin, V.V. Karataev, and V.B. Osvenski, et al., Adv. Mater. Phys. Chem. 3, 119 (2013).CrossRefGoogle Scholar
  10. 10.
    V.B. Osvensky, V.P. Panchenko, and YuN Parkhomenko, et al. J. Alloys Compd. 586, S413–S418 (2014).CrossRefGoogle Scholar
  11. 11.
    L.P. Bulat, I.A. Drabkin, and V.V. Karataev, et al., J. Electron. Mater. 43, 2121 (2014).CrossRefGoogle Scholar
  12. 12.
    B.M. Goltsman, B.A. Kudinov, and I.A. Smirnov, Thermoelectric Semiconductor Materials Based on Bi 2 Te 3. Moskow, Nauka, 1972, 320 p. [Translation available: Army Foreign Science and Technology Center, Charlottesville, Virginia, US, 1973].Google Scholar
  13. 13.
    V.T. Bublik, I.A. Drabkin, and V.V. Karataev, et al., Mater. Electron. Tech. 3, 10 (2012).Google Scholar
  14. 14.
    J.R. Drabble and R. Wolfe, Proc. Phys. Soc. B 69, 1101 (1956).CrossRefGoogle Scholar
  15. 15.
    O. Madelung, Introduction to Solid-State Theory (Berlin: Springer, 1978), p. 491.CrossRefGoogle Scholar
  16. 16.
    M. Stordeur, M. Stolzer, H. Sobotta, and V. Riede, Phys. Stat. Sol. (b) 150, 165 (1988).CrossRefGoogle Scholar
  17. 17.
    D.J. Bergman and O. Levy, J. Appl. Phys. 70, 6821 (1991).CrossRefGoogle Scholar
  18. 18.
    S.V. Faleev and F. Leonard, Phys. Rev. B 77, 214304 (2008).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2014

Authors and Affiliations

  • L. P. Bulat
    • 1
    Email author
  • I. A. Drabkin
    • 2
  • V. B. Osvenskii
    • 2
  • Yu. N. Parkhomenko
    • 2
  • D. A. Pshenay-Severin
    • 3
  • A. I. Sorokin
    • 2
  • A. A. Igonina
    • 2
  • V. T. Bublik
    • 4
  • M. G. Lavrentev
    • 2
  1. 1.ITMO UniversitySt. PetersburgRussian Federation
  2. 2.GIREDMET Ltd.MoscowRussian Federation
  3. 3.Ioffe Physical Technical Institute, Russian Academy of SciencesSt. PetersburgRussian Federation
  4. 4.National University of Science and Technology “MISIS”MoscowRussian Federation

Personalised recommendations