Journal of Electronic Materials

, Volume 44, Issue 6, pp 1834–1845 | Cite as

Unileg Thermoelectric Generator Design for Oxide Thermoelectrics and Generalization of the Unileg Design Using an Idealized Metal

  • Waruna Wijesekara
  • Lasse Rosendahl
  • David R. Brown
  • G. Jeffrey Snyder


The unileg thermoelectric generator (U-TEG) is an increasingly popular concept in the design of thermoelectric generators (TEGs). In this study, an oxide U-TEG design for high-temperature applications is introduced. For the unicouple TEG design, Ca3Co4O9 and Al-doped ZnO are used as the p- and n-leg thermoelectric materials, respectively. For the U-TEG design, constantan and Ca3Co4O9 are employed as conductor and semiconductor, respectively. The reduced current approach (RCA) technique is used to design the unicouple TEG and U-TEG in order to obtain the optimal area ratio. When both the unicouple TEG and U-TEG were subjected to a heat flux of 20 W/cm2, the volumetric power density was 0.18 W/cm3 and 0.44 W/cm3, respectively. Thermal shorting between the hot and cold sides of the generator through the highly thermally conducting conductor, which is one of the major drawbacks of the U-TEG, is overcome by using the optimal area ratio for conductor and semiconductor given by the RCA. The results are further confirmed by finite-element analysis using COMSOL Multiphysics software. Furthermore, the U-TEG design is generalized by using an idealized metal with zero Seebeck coefficient. Even though the idealized metal has no impact on the power output of the U-TEG and all the power in the system is generated by the semiconductor, the U-TEG design succeeded in producing a higher volumetric power density than the unicouple TEG design.


Unileg thermoelectric generator TEG thermoelectric volumetric power density thermal shorting 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Nemoto, T. Iida, J. Sato, T. Sakamoto, N. Hirayama, T. Nakajima, and Y. Takanashi, J. Electron. Mater. 42, 2192 (2013).CrossRefGoogle Scholar
  2. 2.
    D. Madan, A. Chen, P.K. Wright, and J.W. Evans, J. Electron. Mater. 41, 1481 (2012).CrossRefGoogle Scholar
  3. 3.
    D. Madan, Z. Wang, A. Chen, R.-C. Juang, J. Keist, P.K. Wright, and J.W. Evans, ACS Appl. Mater. Interfaces 4, 6117 (2012).CrossRefGoogle Scholar
  4. 4.
    N. Wu, T.C. Holgate, N. Van Nong, N. Pryds, and S. Linderoth, J. Electron. Mater. 42, 2134 (2013).CrossRefGoogle Scholar
  5. 5.
    L. Han, L.T. Hung, N. van Nong, N. Pryds, and S. Linderoth, J. Electron. Mater. 42, 1573 (2012).CrossRefGoogle Scholar
  6. 6.
    G.J. Snyder, in Thermoelectr. Handb. Macro to Nano (Taylor & Francis, Boca Raton, 2006), Chapter 11, pp. 1–26.Google Scholar
  7. 7.
    G. Snyder and T. Ursell, Phys. Rev. Lett. 91, 148301 (2003).CrossRefGoogle Scholar
  8. 8.
    H. Muta, K. Kurosaki, M. Uno, and S. Yamanaka, J. Alloys Compd. 359, 326 (2003).CrossRefGoogle Scholar
  9. 9.
    C. Cagran, T. Hüpf, G. Pottlacher, and G. Lohöfer, Int. J. Thermophys. 28, 2176 (2007).CrossRefGoogle Scholar
  10. 10.
    W. Brückner, S. Baunack, G. Reiss, G. Leitner, and T. Knuth, Thin Solid Films 258, 252 (1995).CrossRefGoogle Scholar
  11. 11.
    F.J. DiSalvo, Science (80) 285, 703 (1999).Google Scholar
  12. 12.
    G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).CrossRefGoogle Scholar
  13. 13.
    D.R. Smith and F.R. Fickett, J. Res. Natl. Inst. Stand. Technol. 100, 119 (1995).Google Scholar
  14. 14.
    Y.A. Cengel, R.H. Turner, and J.M. Cimbala, in Fundam. Therm. - Fluid Sci., 3rd ed. (McGraw Hill Higher Education, Singapore, 2008), pp. 653–722.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2014

Authors and Affiliations

  • Waruna Wijesekara
    • 1
  • Lasse Rosendahl
    • 1
  • David R. Brown
    • 2
  • G. Jeffrey Snyder
    • 2
  1. 1.Department of Energy TechnologyAalborg UniversityAalborgDenmark
  2. 2.Materials ScienceCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations