Advertisement

Journal of Electronic Materials

, Volume 44, Issue 6, pp 1768–1772 | Cite as

Transient Thermoelectric Generator: An Active Load Story

  • J. G. Stockholm
  • C. Goupil
  • P. Maussion
  • H. Ouerdane
Article

Abstract

Under stationary conditions, the optimization of maximum power output and efficiency of thermoelectric generators (TEG) is a well-known subject. Use of a finite-time thermodynamics (FTT) approach to the description of TEGs has demonstrated that there exists a closed feedback effect between the output electrical load value and the entering heat current. From the practical point of view, this effect is strongly evidenced by the use of direct current (DC-to-DC) converters as active loads. Both transient conditions and FTT contribute to a complex landscape of the optimization of the power and efficiencies of a TEG. It has been claimed that the use of inductive load may lead to a strong enhancement of the efficiency, and the frequency response of a TEG as a band-pass filter has also been recently reported. We consider these results using a classical linear Onsager approach of a TEG operating under transient conditions. We show that a trans-admittance may be defined as a coupling element between the input and the output, leading to the observed electric-to-thermal feedback. We discuss recent experiments on a TEG connected to an active load, which is reported to boast an efficiency exceeding the usual stationary DC thermoelectric efficiency.

Keywords

Thermoelectric energy conversion thermoelectric devices thermodynamic constraints on energy production 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Nedelcu, M. Apostol, and J.G. Stockholm, IX Conference of the Polish Ceramic Society (Zakopane, September 2013). (in press)Google Scholar
  2. 2.
    M. Apostol and M. Nedelcu, J. Appl. Phys. 108, 023702 (2010)CrossRefGoogle Scholar
  3. 3.
    Y. Apertet, H. Ouerdane, C. Goupil, and P. Lecoeur, Phys. Rev. E 88, 022137 (2013)CrossRefGoogle Scholar
  4. 4.
    F.L. Curzon and B. Ahlborn, Am. J. Phys. 43, 22 (1975)CrossRefGoogle Scholar
  5. 5.
    B. Andresen, Angew. Chem. Int. Ed. 50, 2690 (2011)CrossRefGoogle Scholar
  6. 6.
    Y. Apertet, H. Ouerdane, O. Glavatskaya, C. Goupil, and P. Lecoeur, EPL 97, 28001 (2012)CrossRefGoogle Scholar
  7. 7.
    Y. Apertet, H. Ouerdane, O. Glavatskaya, C. Goupil, and P. Lecoeur, EPL 101, 68008 (2013)CrossRefGoogle Scholar
  8. 8.
    Y. Apertet, H. Ouerdane, C. Goupil, and P. Lecoeur, Phys. Rev. E 85, 031116 (2012)CrossRefGoogle Scholar
  9. 9.
    H. Ouerdane, Y. Apertet, C. Goupil, A. Abbout, and A. Michot, in Thermoelectric Nanomaterials, ed. by K. Koumoto, T. Mori (Springer Series in Materials Science, Berlin Heidelberg, 2013), pp. 323–351Google Scholar
  10. 10.
    Y. Apertet, H. Ouerdane, C. Goupil, and P. Lecoeur, Phys. Rev. E 85, 041144 (2012)CrossRefGoogle Scholar
  11. 11.
    P.E. Gray, The Dynamic Behavior of Thermoelectric Devices (M.I.T Press, Cambridge, 1960)Google Scholar
  12. 12.
    A.D. Downey, E. Timm, P.F.P. Poudeu, M.G. Kanatzidis, H. Shock, and T.P. Hogan, Mater. Res. Symp. Proc. 886, 425 (2005)CrossRefGoogle Scholar
  13. 13.
    A.D. Downey and T.P. Hogan, Proceedings of the 24th International Conference on Thermoelectrics, Clemson, SC: 2005, pp. 79–82Google Scholar
  14. 14.
    A.D. Downey, T.P. Hogan, and B. Cook, Rev. Sci. Inst. 78, 093904 (2007)CrossRefGoogle Scholar
  15. 15.
    A.D. Downey, Advancing thermoelectric research with new measurement systems and thermoelectric modeling for AC electrical measurements, PhD dissertation (Michigan State University, 2006)Google Scholar
  16. 16.
    W. Park, M.T. Barako, A.M. Marconnet, M. Asheghi, and K.E. Goodson, Proceedings of 13th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, ITherm 2012, pp. 107–112Google Scholar
  17. 17.
    E. Hatzikkraniotis, K.T. Zorbas, I. Samaras, T. Kyratsi, and K.M. Paraskevopoulos, J. Electron. Mater. 39, 2112 (2010)CrossRefGoogle Scholar
  18. 18.
    J. García-Cañadas and G. Min,J. Electron. Mater. 43, 2411 (2014)CrossRefGoogle Scholar
  19. 19.
    M. Nedelcu, M. Apostol, and J.G. Stockholm, IX Conference of the Polish Ceramic Society (Zakopane, Poland, 2013)Google Scholar
  20. 20.
    B. Kim, L. Bun, C. Goupil, B. Dagues, and P. Maussion, Proceedings of the 2014 International Conference on Green Energy Sfax, Tunisia, 220, IEEE Xplore (2014)Google Scholar
  21. 21.
    J.M. Schroeder and G.P. Hirsch, Solid-state thermoelectric power converter, US patent: US 8101846 B1 (2012)Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2014

Authors and Affiliations

  • J. G. Stockholm
    • 1
  • C. Goupil
    • 2
  • P. Maussion
    • 3
  • H. Ouerdane
    • 2
    • 4
  1. 1.Marvel ThermoelectricsVernouilletFrance
  2. 2.Laboratoire Interdisciplinaire des Energies de Demain (LIED) UMR 8236 Université Paris Diderot CNRSParisFrance
  3. 3.Laboratoire Plasma et Conversion d’Energie (LAPLACE) UMR 5213 INP Université de Toulouse CNRSToulouseFrance
  4. 4.Russian Quantum CenterMoscow RegionRussia

Personalised recommendations