Journal of Electronic Materials

, Volume 44, Issue 5, pp 1281–1286 | Cite as

Defect-Related Luminescence in Undoped GaN Grown by HVPE

  • M.A. Reshchikov
  • A. Usikov
  • H. Helava
  • Yu. Makarov

Hydride vapor phase epitaxy (HVPE) is used for the growth of low-defect GaN. We have grown undoped films on sapphire and investigated them using steady-state and time-resolved photoluminescence (PL). One of the dominant PL bands in high-quality GaN grown by HVPE is the green luminescence (GL) band with a maximum at 2.4 eV. This PL band can be easily recognized in time-resolved PL measurements due to its exponential decay even at low temperatures (<50 K), with a characteristic lifetime of 1–2 μs. As the temperature increases from 70 K to 280 K, the PL lifetime for the GL band increases by an order of magnitude. This unusual phenomenon can be explained on the assumption that the electron-capture coefficient for the GL-related defect decreases with temperature as T −2.6.


GaN HVPE photoluminescence defects 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y. Saitoh, K. Sumiyoshi, M. Okada, T. Horii, T. Miyazaki, H. Shiomi, M. Ueno, K. Katayama, M. Kiyama, and T. Nakamura, Appl. Phys. Express 3, 081001 (2010).CrossRefGoogle Scholar
  2. 2.
    Y. Wang, H. Xu, S. Alur, Y. Sharma, F. Tong, P. Gartland, T. Issacs-Smith, C. Ahyi, J. Williams, M. Park, G. Wheeler, M. Johnson, A.A. Allerman, A. Hanser, T. Paskova, E.A. Preble, and K.R. Evans, Phys. Stat. Sol. (c) 8, 2430 (2011).CrossRefGoogle Scholar
  3. 3.
    J. Everts, J. van den Keybus, M. Van Hove, D. Visalli, P. Srivastava, D. Marcon, K. Cheng, M. Leys, S. Decoutere, J. Driesen, and G. Borghs, Electron Device Lett. IEEE 32, 1370 (2011).CrossRefGoogle Scholar
  4. 4.
    M.-W. Ha, C.H. Roh, D.W. Hwang, H.G. Choi, H.J. Song, J.H. Lee, J.H. Park, O. Seok, J. Lim, M.-K. Han, and C.-K. Hahn, Jap. J. Appl. Phys. 50, 06GF17 (2011).CrossRefGoogle Scholar
  5. 5.
    M.A. Reshchikov and H. Morkoç, J. Appl. Phys. 97, 061301 (2005).CrossRefGoogle Scholar
  6. 6.
    E.R. Glaser, J.A. Freitas Jr, G.C. Braga, W.E. Carlos, M.E. Twigg, A.E. Wickenden, D.D. Koleske, R.L. Henry, M. Leszczynski, I. Grzegory, T. Suski, S. Porowski, S.S. Park, K.Y. Lee, and R.J. Molnar, Phys. B 308–310, 51 (2001).CrossRefGoogle Scholar
  7. 7.
    A.Y. Polyakov, I.-H. Lee, N.B. Smirnov, A.V. Govorkov, E.A. Kozhukhova, and S.J. Pearton, J. Appl. Phys. 109, 123701 (2011).CrossRefGoogle Scholar
  8. 8.
    J.A. Freitas Jr, M.A. Mastro, E.R. Glaser, N.Y. Garces, S.K. Lee, J.H. Chung, D.K. Oh, and K.B. Shim, J. Crystal Growth 350, 27 (2012).CrossRefGoogle Scholar
  9. 9.
    P.P. Paskov, B. Monemar, T. Paskova, E.A. Preble, A.D. Hanser, and K.R. Evans, Phys. Stat. Sol. (c) 6, S763 (2009).CrossRefGoogle Scholar
  10. 10.
    N.Y. Garces, B.N. Feigelson, J.A. Freitas Jr, J. Kim, R. Myers-Ward, and E.R. Glaser, J. Crystal Growth 312, 2558 (2010).CrossRefGoogle Scholar
  11. 11.
    J.A. Freitas Jr, J.G. Tischer, N.Y. Garces, and B.N. Feigelson, J. Crystal Growth 281, 168 (2005).CrossRefGoogle Scholar
  12. 12.
    M.A. Reshchikov, A. Usikov, H. Helava, and Yu Makarov, Appl. Phys. Lett. 104, 032103 (2014).CrossRefGoogle Scholar
  13. 13.
    A. Castaldini, A. Cavallini, L. Polenta, C. Diaz-Guerra, and J. Piqueras, J. Phys. 14, 13095 (2002).Google Scholar
  14. 14.
    W. Götz, L.T. Romano, B.S. Krusor, and N.M. Johnson, Appl. Phys. Lett. 69, 242 (1996).CrossRefGoogle Scholar
  15. 15.
    J.A. Freitas Jr, J. Crystal Growth 281, 168 (2005).CrossRefGoogle Scholar
  16. 16.
    F. Tuomisto, K. Saarinen, B. Lucznik, I. Grzegory, H. Teisseyre, T. Suski, S. Porowski, P.R. Hageman, and J. Likonen, Appl. Phys. Lett. 86, 031915 (2005).CrossRefGoogle Scholar
  17. 17.
    B. Monemar, P.P. Paskov, F. Tuomisto, K. Saarinen, M. Iwaya, S. Kamiyama, H. Amano, I. Akasaki, and S. Kimura, Phys. B 376–377, 440 (2006).CrossRefGoogle Scholar
  18. 18.
    R. Liu, A. Bell, F.A. Ponce, C.Q. Chen, J.W. Yang, and M.A. Khan, Appl. Phys. Lett. 86, 021908 (2005).CrossRefGoogle Scholar
  19. 19.
    I. Tischer, M. Feneberg, M. Schirra, H. Yacoub, R. Sauer, K. Thonke, T. Wunderer, F. Scholz, L. Dieterle, E. Müller, and D. Gerthsen, Phys. Stat. Sol. B 248, 611 (2011).CrossRefGoogle Scholar
  20. 20.
    P.P. Paskov, R. Schifano, T. Malinauskas, T. Paskova, J.P. Bergman, B. Monemar, S. Figge, D. Hommel, B.A. Haskell, P.T. Fini, J.S. Speck, and S. Nakamura, Phys. Stat. Sol. (c) 3, 1499 (2006).CrossRefGoogle Scholar
  21. 21.
    M.A. Reshchikov, A. Kvasov, T. McMullen, M.F. Bishop, A. Usikov, V. Soukhoveev, and V.A. Dmitriev, Phys. Rev. B 84, 075212 (2011).CrossRefGoogle Scholar
  22. 22.
    M.A. Reshchikov, D.O. Demchenko, A. Usikov, H. Helava, and Yu. Makarov, Phys. Rev. B 90, 235203 (2014).Google Scholar
  23. 23.
    M.A. Reshchikov, D.O. Demchenko, J.D. McNamara, S. Fernández-Garrido, and R. Calarco, Phys. Rev. B 90, 035207 (2014).CrossRefGoogle Scholar
  24. 24.
    R.Y. Korotkov, M.A. Reshchikov, and B.W. Wessels, Phys. B 325, 1 (2003).CrossRefGoogle Scholar
  25. 25.
    M.A. Reshchikov, J. Appl. Phys. 115, 103503 (2014).CrossRefGoogle Scholar
  26. 26.
    D.K. Schroder, Semiconductor Material and Device Characterization, 3rd ed. (Hoboken: Wiley, 2006).Google Scholar
  27. 27.
    M.A. Reshchikov and R.Y. Korotkov, Phys. Rev. B 64, 115205 (2001).CrossRefGoogle Scholar
  28. 28.
    V.N. Abakumov, V.I. Perel, and I.N. Yassievich, Nonradiative Recombination in Semiconductors (Amsterdam: Elsevier, 1991).Google Scholar
  29. 29.
    V.N. Abakumov, V.I. Perel, and I.N. Yassievich, Sov. Phys. Semicond. 12, 1 (1978).Google Scholar
  30. 30.
    J.I. Pankove, Optical Processes in Semiconductors (New York: Dover Publications Inc., 1971).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2014

Authors and Affiliations

  • M.A. Reshchikov
    • 1
  • A. Usikov
    • 2
    • 3
  • H. Helava
    • 2
  • Yu. Makarov
    • 2
  1. 1.Department of PhysicsVirginia Commonwealth UniversityRichmondUSA
  2. 2.Nitride Crystals, Inc.Deer ParkUSA
  3. 3.Saint-Petersburg National Research University of Information Technologies, Mechanics and OpticsSaint PetersburgRussia

Personalised recommendations