Journal of Electronic Materials

, Volume 44, Issue 6, pp 1663–1667 | Cite as

YbCu2Si2–LaCu2Si2 Solid Solutions with Enhanced Thermoelectric Power Factors

  • Gloria J. Lehr
  • Donald T. Morelli
  • Hyungyu Jin
  • Joseph P. Heremans
Article

Abstract

Cryogenic Peltier coolers are ideal for cooling infrared sensors on satellites. To make these thermoelectric devices a realistic option for this application, the efficiency of thermoelectric materials at cryogenic temperatures must be substantially enhanced. Intermediate valence Yb-based compounds have large peaks in the Seebeck coefficient at low temperatures; to optimize these materials this must be understood. We created solid solutions between the intermediate valence compound YbCu2Si2 and an isostructural compound LaCu2Si2 to manipulate the temperature at which the Seebeck coefficient peaks and to maximize zT by reduction of lattice thermal conductivity. An enormous power factor of 110 μW/cm K2 at 100 K and a maximum zT of 0.14 at 125 K were achieved for one of these solid solutions.

Keywords

YbCu2Si2 intermediate valence thermoelectric properties solid solutions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Mahan, B. Sales, and J. Sharp, Phys. Today 50, 42 (1997).CrossRefGoogle Scholar
  2. 2.
    V. Zlatić and R. Monnier, Phys. Rev. B 71, 165109 (2005).CrossRefGoogle Scholar
  3. 3.
    N. Oeschler, N. Oeschler, et al., Properties and Applications of Thermoelectric Materials, ed. V. Zlatić and A.C. Hewson (Netherlands: Springer, 2009), p. 81.CrossRefGoogle Scholar
  4. 4.
    V. Zlatić, et al., Phys. Rev. B 68, 104432 (2003).CrossRefGoogle Scholar
  5. 5.
    M.B. Maple, L.E. DeLong, and B.C. Sales, Handbook on the Physics and Chemistry of Rare Earths, Vol. 1, ed. K.A. Gschneidner and L. Eyring (Amsterdam: Elsevier, 1978), p. 797.Google Scholar
  6. 6.
    G.J. Lehr, D.T. Morelli, H. Jin, and J.P. Heremans, J. Appl. Phys. 114, 223712 (2013).CrossRefGoogle Scholar
  7. 7.
    K. Alami-Yadri, H. Wilhelm, and D. Jaccard, Phys. B Condens. Matter 259–261, 157 (1999).Google Scholar
  8. 8.
    G. Neumann, et al., Z. Für Phys. B Condens. Matter 59, 133 (1985).CrossRefGoogle Scholar
  9. 9.
    J.M. Lawrence, G.H. Kwei, P.C. Canfield, J.G. Dewitt, and A.C. Lawson, Phys. Rev. B 49, 1627 (1994).CrossRefGoogle Scholar
  10. 10.
    A. Grytsiv, D. Kaczorowski, V.H. Tran, A. Leithe-Jasper, and P. Rogl, J. Alloys Compd. 504, 1 (2010).CrossRefGoogle Scholar
  11. 11.
    Dung, N. D. et al. J. Phys. Soc. Jpn. 78, 084711 (2009)Google Scholar
  12. 12.
    W. Franz, A. Grießel, F. Steglich, and D. Wohlleben, Z. Für Phys. B Condens. Matter 31, 7 (1978).Google Scholar
  13. 13.
    K. Alami-Yadri and D. Jaccard, Solid State Commun. 100, 385 (1996).CrossRefGoogle Scholar
  14. 14.
    N. Tsujii, H. Kitazawa, T. Aoyagi, T. Kimura, and G. Kido, J. Magn. Magn. Mater. 310, 349 (2007).CrossRefGoogle Scholar
  15. 15.
    D.M. Rowe, V.L. Kuznetsov, L.A. Kuznetsova, and G. Min, J. Phys. Appl. Phys. 35, 2183 (2002).CrossRefGoogle Scholar
  16. 16.
    G.J. Lehr and D.T. Morelli, Intermetallics 32, 225 (2013).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2014

Authors and Affiliations

  • Gloria J. Lehr
    • 1
  • Donald T. Morelli
    • 1
    • 2
  • Hyungyu Jin
    • 3
  • Joseph P. Heremans
    • 3
    • 4
  1. 1.Department of Chemical Engineering and Materials ScienceMichigan State UniversityEast LansingUSA
  2. 2.Department of Physics and AstronomyMichigan State UniversityEast LansingUSA
  3. 3.Department of Mechanical and Aerospace EngineeringThe Ohio State UniversityColumbusUSA
  4. 4.Department of PhysicsThe Ohio State UniversityColumbusUSA

Personalised recommendations