YbCu2Si2–LaCu2Si2 Solid Solutions with Enhanced Thermoelectric Power Factors


Cryogenic Peltier coolers are ideal for cooling infrared sensors on satellites. To make these thermoelectric devices a realistic option for this application, the efficiency of thermoelectric materials at cryogenic temperatures must be substantially enhanced. Intermediate valence Yb-based compounds have large peaks in the Seebeck coefficient at low temperatures; to optimize these materials this must be understood. We created solid solutions between the intermediate valence compound YbCu2Si2 and an isostructural compound LaCu2Si2 to manipulate the temperature at which the Seebeck coefficient peaks and to maximize zT by reduction of lattice thermal conductivity. An enormous power factor of 110 μW/cm K2 at 100 K and a maximum zT of 0.14 at 125 K were achieved for one of these solid solutions.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.


  1. 1.

    G. Mahan, B. Sales, and J. Sharp, Phys. Today 50, 42 (1997).

  2. 2.

    V. Zlatić and R. Monnier, Phys. Rev. B 71, 165109 (2005).

  3. 3.

    N. Oeschler, N. Oeschler, et al., Properties and Applications of Thermoelectric Materials, ed. V. Zlatić and A.C. Hewson (Netherlands: Springer, 2009), p. 81.

  4. 4.

    V. Zlatić, et al., Phys. Rev. B 68, 104432 (2003).

  5. 5.

    M.B. Maple, L.E. DeLong, and B.C. Sales, Handbook on the Physics and Chemistry of Rare Earths, Vol. 1, ed. K.A. Gschneidner and L. Eyring (Amsterdam: Elsevier, 1978), p. 797.

  6. 6.

    G.J. Lehr, D.T. Morelli, H. Jin, and J.P. Heremans, J. Appl. Phys. 114, 223712 (2013).

  7. 7.

    K. Alami-Yadri, H. Wilhelm, and D. Jaccard, Phys. B Condens. Matter 259–261, 157 (1999).

  8. 8.

    G. Neumann, et al., Z. Für Phys. B Condens. Matter 59, 133 (1985).

  9. 9.

    J.M. Lawrence, G.H. Kwei, P.C. Canfield, J.G. Dewitt, and A.C. Lawson, Phys. Rev. B 49, 1627 (1994).

  10. 10.

    A. Grytsiv, D. Kaczorowski, V.H. Tran, A. Leithe-Jasper, and P. Rogl, J. Alloys Compd. 504, 1 (2010).

  11. 11.

    Dung, N. D. et al. J. Phys. Soc. Jpn. 78, 084711 (2009)

  12. 12.

    W. Franz, A. Grießel, F. Steglich, and D. Wohlleben, Z. Für Phys. B Condens. Matter 31, 7 (1978).

  13. 13.

    K. Alami-Yadri and D. Jaccard, Solid State Commun. 100, 385 (1996).

  14. 14.

    N. Tsujii, H. Kitazawa, T. Aoyagi, T. Kimura, and G. Kido, J. Magn. Magn. Mater. 310, 349 (2007).

  15. 15.

    D.M. Rowe, V.L. Kuznetsov, L.A. Kuznetsova, and G. Min, J. Phys. Appl. Phys. 35, 2183 (2002).

  16. 16.

    G.J. Lehr and D.T. Morelli, Intermetallics 32, 225 (2013).

Download references

Author information

Correspondence to Gloria J. Lehr.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lehr, G.J., Morelli, D.T., Jin, H. et al. YbCu2Si2–LaCu2Si2 Solid Solutions with Enhanced Thermoelectric Power Factors. Journal of Elec Materi 44, 1663–1667 (2015) doi:10.1007/s11664-014-3509-3

Download citation


  • YbCu2Si2
  • intermediate valence
  • thermoelectric properties
  • solid solutions