Advertisement

Journal of Electronic Materials

, Volume 44, Issue 6, pp 1614–1626 | Cite as

Optimization Strategies for a Portable Thermoelectric Vaccine Refrigeration System in Developing Communities

  • B. Ohara
  • R. Sitar
  • J. Soares
  • P. Novisoff
  • A. Nunez-Perez
  • H. Lee
Article

Abstract

The traditional approach to determine an optimum current for thermoelectric cooling assumes that a refrigeration chamber is insulated and has no thermal resistance to a thermoelectric module. As a result, minimum temperature occurs when Peltier cooling matches with parasitic heat transfer and Joule heating. In practical application, minimum temperature happens when heat addition from the environment is matched with heat extracted by a thermoelectric module, and the optimum current differs from that anticipated by the traditional approach. Hence, consideration for insulation and thermal resistances via thermoelectric module should be made to achieve desirable cooling performance/refrigeration temperature. This paper presents a modeling approach to determine the optimum current as well as the optimum geometry to power a small thermoelectric vaccine delivery system for developing communities under the World Health Organization requirements. The model is derived from three energy conservation equations for temperatures at both ends of the thermoelectric materials within a module, as well as the refrigeration chamber temperature. A prototype was built and demonstrated a minimum temperature of 3.4°C. With optimized module geometry, the system is estimated to reduce power consumption by over 50% while achieving twice the temperature difference.

Keywords

Peltier optimum current geometry system optimization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bill and Melinda Gates Foundation. Wanted: Innovative Ways to Reach All Children with Vaccines. (Seattle: Bill and Melinda Gates Foundation, 2013).Google Scholar
  2. 2.
    World Health Organization. PQS Performance Specification: Vaccine Carrier. (Geneva: World Health Organization, 2010).Google Scholar
  3. 3.
    N.F. Güler and R. Ahiska, Appl. Therm. Eng. 22, 1271 (2002).CrossRefGoogle Scholar
  4. 4.
    N. Putra, J. Med. Eng. Technol. 33, 232 (2009).CrossRefGoogle Scholar
  5. 5.
    K. Sakai, M. Karppinen, J.M. Chen, R.S. Liu, S. Sugihara, and H. Yamauchi, Appl. Phys. Lett. 88, 232102 (2006).CrossRefGoogle Scholar
  6. 6.
    H.C. Hsu, W.L. Lee, K.K. Wu, Y.K. Kuo, B.H. Chen, and F.C. Chou, J. Appl. Phys. 111, 103709 (2012).CrossRefGoogle Scholar
  7. 7.
    S. Wang, S. Chen, G. Yan, F. Liu, S. Dai, J. Wang, et al., Thin Solid Films 534, 168 (2013).CrossRefGoogle Scholar
  8. 8.
    L.H. Yin, R. Ang, B.C. Zhao, Y.N. Huang, Y. Liu, S.G. Tan, et al., Solid State Commun. 158, 16–19 (2013).CrossRefGoogle Scholar
  9. 9.
    N. Sun, S.T. Dong, B.B. Zhang, Y.B. Chen, J. Zhou, S.T. Zhang, et al., J. Appl. Phys. 114, 043705 (2013).CrossRefGoogle Scholar
  10. 10.
    J. Luo, Optimum allocation of heat transfer surface area for cooling load and COP optimization of a thermoelectric refrigerator 2003.Google Scholar
  11. 11.
    S.W. Angrist, Direct Energy Conversion (Boston: Allyn and Bacon, 1965).Google Scholar
  12. 12.
    D.M. Rowe, CRC Handbook of Thermoelectrics (Boca Raton: CRC Press, Inc., 1995).CrossRefGoogle Scholar
  13. 13.
    B.J. Huang, C.J. Chin, and C.L. Duang, Int. J. Refrig. 23, 206–218 (2000).Google Scholar
  14. 14.
    P. Shi, S. Wong, Y.M. Tan, V. Sunappan, W. Fan, K.M. Chua, et al., ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems collocated with the ASME 2005 San Francisco 2005.Google Scholar
  15. 15.
    D. Astrain, J.G. Vián, and J. Albizua, Appl. Therm. Eng. 25, 3149 (2005).CrossRefGoogle Scholar
  16. 16.
    D. Astrain, J.G. Vian, and M. Dominguez, Appl. Therm. Eng. 23, 2183 (2003).CrossRefGoogle Scholar
  17. 17.
    D. Astrain, A. Martínez, J. Gorraiz, A. Rodríguez, and G. Pérez, J. Electron. Mater. 41, 1081 (2012).CrossRefGoogle Scholar
  18. 18.
    M. Gomez, B. Ohara, R. Reid, and H. Lee, J. Electron. Mater. 43, 1744 (2013).CrossRefGoogle Scholar
  19. 19.
    J. P. Holman, Heat Transfer, 10th edn. (McGrawHill, 2010)..Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2014

Authors and Affiliations

  • B. Ohara
    • 1
  • R. Sitar
    • 1
  • J. Soares
    • 1
  • P. Novisoff
    • 1
  • A. Nunez-Perez
    • 1
  • H. Lee
    • 1
  1. 1.Department of Mechanical EngineeringSanta Clara UniversitySanta ClaraUSA

Personalised recommendations