Journal of Electronic Materials

, Volume 44, Issue 6, pp 1599–1605 | Cite as

Use of Field-Effect Density Modulation to Increase ZT for Si Nanowires: A Simulation Study

  • Neophytos NeophytouEmail author
  • Hossein Karamitaheri
  • Hans Kosina


Modulation doping is a promising means of increasing the electrical conductivity of thermoelectric (TE) materials and achieving a high figure of merit (ZT). We compared, qualitatively and quantitatively, the TE performance of a field-effect density modulated Si nanowire channel of diameter D = 12 nm with that of its doped counterpart, by use of self-consistent atomistic tight-binding simulations coupled to the Boltzmann transport equation. We describe the simulation model, and show that as a result of a large improvement in electrical conductivity, gating, rather than doping, can result in greater than three-fold improvement of the TE power factor. Despite the large increase in the electronic part of the thermal conductivity, the total thermal conductivity is still dominated by phonons. Thus, a ZT more than three-fold higher can also be achieved in the gated channel compared with the doped channel. Finally, we show that the power factor peak is obtained when the Fermi level resides ∼k B T below the band edge, as is observed for doped channels.


Silicon nanowires low-dimensional thermoelectrics gated thermoelectrics Boltzmann transport thermoelectric power factor Seebeck coefficient 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The work leading to these results has received funding from the European Community’s Seventh Framework Programme under grant agreement no. FP7-263306, and the Austrian Science Fund FWF under project number P25368.


  1. 1.
    N. Neophytou and H. Kosina, Phys. Rev. B 83, 245305 (2011).CrossRefGoogle Scholar
  2. 2.
    M. Zebarjadi, G. Joshi, G. Zhu, B. Yu, A. Minnich, Y. Lan, X. Wang, M. Dresselhaus, Z. Ren, and G. Chen, Nano Lett. 11, 2225 (2011).CrossRefGoogle Scholar
  3. 3.
    B. Yu, M. Zebarjadi, H. Wang, K. Lukas, H. Wang, D. Wang, C. Opeil, M. Dresselhaus, G. Chen, and Z. Ren, Nano Lett. 12, 2077 (2012).CrossRefGoogle Scholar
  4. 4.
    B.M. Curtin, E.A. Codecido, S. Krämer, and J.E. Bowers, Nano Lett. 13, 5503 (2013).CrossRefGoogle Scholar
  5. 5.
    Y. Tian, M.R. Sakr, J.M. Kinder, D. Liang, M.J. MacDonald, R.L.J. Qiu, H.-J. Gao, and X.P.A. Gao, Nano Lett. 12, 6492 (2012).CrossRefGoogle Scholar
  6. 6.
    J. Moon, J.-H. Kim, Z.C.Y. Chen, J. Xiang, and R. Chen, Nano Lett. 13, 1196 (2013).CrossRefGoogle Scholar
  7. 7.
    B.M. Curtin and J.E. Bowers, J. Appl. Phys. 115, 143704 (2014).CrossRefGoogle Scholar
  8. 8.
    W. Liang, A.I. Hochbaum, M. Fardy, O. Rabin, M. Zhang, and P. Yang, Nano Lett. 9, 1689 (2009).CrossRefGoogle Scholar
  9. 9.
    A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, and P. Yang, Nature 451, 163 (2008).CrossRefGoogle Scholar
  10. 10.
    A.I. Boukai, Y. Bunimovich, J.T. Kheli, J.-K. Yu, W.A. Goddard III, and J.R. Heath, Nature 451, 168 (2008).CrossRefGoogle Scholar
  11. 11.
    N. Neophytou, O. Baumgartner, Z. Stanojevic, and H. Kosina, Solid State Electron. 90, 44 (2013).CrossRefGoogle Scholar
  12. 12.
    T.B. Boykin, G. Klimeck, and F. Oyafuso, Phys. Rev. B 69, 115201 (2004).CrossRefGoogle Scholar
  13. 13.
    G. Klimeck, S. Ahmed, H. Bae, N. Kharche, S. Clark, B. Haley, S. Lee, M. Naumov, H. Ryu, F. Saied, M. Prada, M. Korkusinski, and T.B. Boykin, IEEE Trans. Electron. Dev. 54, 2079 (2007).CrossRefGoogle Scholar
  14. 14.
    N. Neophytou, M. Wagner, H. Kosina, and S. Selberherr, J. Electron. Mater. 39, 1902–1908 (2010).CrossRefGoogle Scholar
  15. 15.
    S. Lee, F. Oyafuso, P. Von Allmen, and G. Klimeck, Phys. Rev. B 69, 045316 (2004).CrossRefGoogle Scholar
  16. 16.
    G.D. Mahan and J.O. Sofo, Proc. Natl. Acad. Sci. USA 93, 7436 (1996).CrossRefGoogle Scholar
  17. 17.
    T.J. Scheidemantel, C. Ambrosch-Draxl, T. Thonhauser, J.V. Badding, and J.O. Sofo, Phys. Rev. B 68, 125210 (2003).CrossRefGoogle Scholar
  18. 18.
    S. Jin, M.V. Fischetti, and T.-W. Tang, J. Appl. Phys. 102, 083715 (2007).CrossRefGoogle Scholar
  19. 19.
    H. Sakaki, T. Noda, K. Hirakawa, M. Tanaka, and T. Matsusue, Appl. Phys. Lett. 51, 1934 (1987).CrossRefGoogle Scholar
  20. 20.
    K. Uchida and S. Takagi, Appl. Phys. Lett. 82, 2916 (2003).CrossRefGoogle Scholar
  21. 21.
    E.B. Ramayya, D. Vasileska, S.M. Goodnick, and I. Knezevic, J. Appl. Phys. 104, 063711 (2008).CrossRefGoogle Scholar
  22. 22.
    N. Neophytou and H. Kosina, Phys. Rev. B 84, 085313 (2011).CrossRefGoogle Scholar
  23. 23.
    H.J. Ryu, Z. Aksamija, D.M. Paskiewicz, S.A. Scott, M.G. Lagally, I. Knezevic, and M.A. Eriksson, Phys. Rev. Lett. 105, 256601 (2010).CrossRefGoogle Scholar
  24. 24.
    N. Neophytou and H. Kosina, J. Appl. Phys. 112, 024305 (2012).CrossRefGoogle Scholar
  25. 25.
    K. Rameshan, N.A. Wong, K. Chan, S.P. Sim, and C.Y. Yang, Solid-State Electron. 46, 153 (2002).CrossRefGoogle Scholar
  26. 26.
    H. Karamitaheri, N. Neophytou, and H. Kosina, J. Electron. Mater. 43, 1829 (2014).CrossRefGoogle Scholar
  27. 27.
    H. Karamitaheri, N. Neophytou, and H. Kosina, J. Appl. Phys. 115, 024302 (2014).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2014

Authors and Affiliations

  • Neophytos Neophytou
    • 1
    Email author
  • Hossein Karamitaheri
    • 2
  • Hans Kosina
    • 3
  1. 1.School of EngineeringUniversity of WarwickCoventryUK
  2. 2.Department of Electrical EngineeringUniversity of KashanKashanIran
  3. 3.Institute for MicroelectronicsTechnical University of ViennaWienAustria

Personalised recommendations