Advertisement

Journal of Electronic Materials

, Volume 44, Issue 6, pp 1547–1553 | Cite as

Influence of Postdeposition Cooling Atmosphere on Thermoelectric Properties of 2% Al-Doped ZnO Thin Films Grown by Pulsed Laser Deposition

  • S. Saini
  • P. Mele
  • H. Honda
  • K. Matsumoto
  • K. Miyazaki
  • L. Molina Luna
  • P. E. Hopkins
Article

Abstract

We have investigated the thermoelectric properties of 2% Al-doped ZnO (AZO) thin films depending on the postdeposition cooling atmosphere [in oxygen pressure (AZO-O) or vacuum (AZO-V)]. Thin films were grown by pulsed laser deposition on sapphire (\(\hbox {Al}_2\hbox {O}_3\)) substrates at various deposition temperatures (\(400^{\circ }\hbox {C}\) to \(600^{\circ }\hbox {C}\)). All films were c-axis oriented. The electrical conductivity of AZO-V thin films was higher than that of AZO-O thin films across the whole temperature range from 300 K to 600 K, due to the optimal carrier concentration (\(10^{20}\,\hbox {cm}^{-3}\)) of AZO-V samples. Furthermore, the thermoelectric performance of AZO-V films increased with the deposition temperature; for instance, the highest power factor of \(0.87\,\times \,10^{-3}\,\hbox{W} \, \hbox{m}^{-1} \, \hbox{K}^{-2}\) and dimensionless figure of merit of 0.07 at 600 K were found for AZO-V thin film deposited at \(600^{\circ }\hbox {C}\).

Keywords

c-Axis orientation Al-doped ZnO thin films  pulsed laser deposition Seebeck coefficient power factor thermoelectric oxides 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We thank Prof. T. Suzuki, Prof. T. Takabatake and Prof. T. Suekuni, AdSM, Hiroshima University, for their kind support on experimental techniques and measurements.

References

  1. 1.
    G.M. Ali and P. Chakrabarti, J. Phys. D: Appl. Phys. 43, 415103 (2010).CrossRefGoogle Scholar
  2. 2.
    P.X. Gao and Z.L. Wang, J. Appl. Phys. 97, 044304 (2005).CrossRefGoogle Scholar
  3. 3.
    M. Law, L.E. Greene, J.C. Johnson, and R. Saykally, P. Yang, Nat. Mater. 4, 455 (2005).CrossRefGoogle Scholar
  4. 4.
    M. Kaur, S.V.S. Chauhan, S. Sinha, M. Bharti, R. Mohan, S.K. Gupta, and J.V. Yakhmi, J. Nanosci. Nanotechnol. 9, 5293 (2009).CrossRefGoogle Scholar
  5. 5.
    M. Ohtaki, T. Tsubota, K. Eguchi, and H. Arai, J. Appl. Phys. 79, 1816 (1996).CrossRefGoogle Scholar
  6. 6.
    J.P. Wiff, Y. Kinemuchi, and K. Watari, Mater. Lett. 63, 2470 (2009).CrossRefGoogle Scholar
  7. 7.
    A.I. Abutaha, S.R. Sarath Kumar, and H.N. Alshareef, Appl. Phys. Lett. 102, 053507 (2013).CrossRefGoogle Scholar
  8. 8.
    J.W. Fergus, J. Eur. Ceram. Soc. 32, 525 (2012).CrossRefGoogle Scholar
  9. 9.
    R. Honga, H. Qia, J. Huanga, H. Hea, Z. Fana, and J. Shaoa, Thin Solid Films 473, 58 (2005).CrossRefGoogle Scholar
  10. 10.
    F.K. Shan, G.X. Liu, W.J. Lee, and B.C. Shin, J. Appl. Phys. 101, 053106 (2007).CrossRefGoogle Scholar
  11. 11.
    B. Singh, Z.A. Khan, I. Khan, and S. Ghosh, Appl. Phys. Lett. 97, 241903 (2010).CrossRefGoogle Scholar
  12. 12.
    P. Mele, S. Saini, H. Honda, K. Matsumoto, K. Miyazaki, H. Hagino, and A. Ichinose, Appl. Phys. Lett. 102, 253903 (2013).CrossRefGoogle Scholar
  13. 13.
    S. Saini, P. Mele, H. Honda, D.J. Henry, P.E. Hopkins, L.M. Luna, K. Matsumoto, K. Miyazaki, and A. Ichinose, Jpn. J. Appl. Phys. 53, 060306 (2014).CrossRefGoogle Scholar
  14. 14.
    P. Mele, K. Matsumoto, T. Azuma, K. Kamesawa, S. Tanaka, J. Kurosaki, and K. Miyazaki, Mater. Res. Soc. Symp. Proc. 1166, 3 (2009).CrossRefGoogle Scholar
  15. 15.
    D.G. Cahill, K.E. Goodson, and A. Majumdar, J. Heat Transf. 124, 223241 (2002).CrossRefGoogle Scholar
  16. 16.
    A.J. Schmidt, X. Chen, and G. Chen, Rev. Sci. Instrum. 79, 114902 (2008).CrossRefGoogle Scholar
  17. 17.
    P.E. Hopkins, J.R. Serrano, L.M. Phinney, S.P. Kearney, T.W. Grasser, and C.T. Harris, J. Heat Transf. 132, 081302 (2010).CrossRefGoogle Scholar
  18. 18.
    H. Böttner, Mater. Res. Soc. Symp. Proc. 1166, N01–01 (2009).CrossRefGoogle Scholar
  19. 19.
    G.S. Nolas and H.J. Goldsmid, Thermal Conductivity: Theory, Properties and Applications (Kluwer Academic/Plenum, New York, 2004), p. 114.Google Scholar
  20. 20.
    J.Y. Seto, J. Appl. Phys. 46, 5247 (1975).CrossRefGoogle Scholar
  21. 21.
    K.-K. Kim, S. Niki, J.Y. Oh, J.O. Song, T.Y. Seong, S.J. Park, S. Fujita, and S.W. Kim, J. Appl. Phys. 97, 066103 (2005).CrossRefGoogle Scholar
  22. 22.
    G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2014

Authors and Affiliations

  • S. Saini
    • 1
  • P. Mele
    • 1
  • H. Honda
    • 2
  • K. Matsumoto
    • 3
  • K. Miyazaki
    • 3
  • L. Molina Luna
    • 4
  • P. E. Hopkins
    • 5
  1. 1.Institute for Sustainable Sciences and DevelopmentHiroshima UniversityHigashi-HiroshimaJapan
  2. 2.Graduate School for Advanced Sciences of MatterHiroshima UniversityHigashi-HiroshimaJapan
  3. 3.Kyushu Institute of TechnologyDepartment of Material ScienceKitakyushuJapan
  4. 4.Department of Materials and GeosciencesTechnical University of DarmstadtDarmstadtGermany
  5. 5.Department of Mechanical and Aerospace EngineeringUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations