Journal of Electronic Materials

, Volume 44, Issue 1, pp 295–302 | Cite as

Dielectric Properties of Ca0.7Bi0.3Ti0.7Cr0.3O3 (CBTC)–CaCu3Ti4O12 (CCTO) Composite

  • E. J. J. Mallmann
  • M. A. S. Silva
  • A. S. B. Sombra
  • M. A. Botelho
  • S. E. Mazzetto
  • A. S. de  Menezes
  • A. F. L. Almeida
  • P. B. A. FechineEmail author


The main object of this work is to study two materials with giant dielectric constants: CaCu3Ti4O12 (CCTO) and Ca0.7Bi0.3Ti0.7Cr0.3O3 (CBTC). CBTC1−x –CCTO x composites were also obtained to create a new dielectric material with dielectric properties between these two phases. Structural properties were studied by x-ray powder diffraction (XRPD), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy and dielectric measurements. CCTO showed a cubic phase and CBTC an orthorhombic phase. An interesting result was that the dielectric constant (K) did not follow the rule of the mixture of Lichtnecker, and this happened due to the presence of other phases of its crystalline structure, which decreases the value of K when compared to the predicted values of Lichtnecker. It was also found that the dielectric properties of the composite are very promising for use in microelectronics, according to the miniaturization factor, which is crucial for those applications.


CaCu3Ti4O12 dielectric measurements ceramics composite microdevice 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We gratefully acknowledge the financial support of Brazilian Agencies for Scientific and Technological Development CAPES, Funcap, FAPEMA, IPDI and CNPq.


  1. 1.
    I. Burn, Ceramic Capacitor Dielectric. In: Engineered Materials Handbook®-Ceramics and Glasses, vol. 4 (ASM International, The Materials Information Society, 1991).Google Scholar
  2. 2.
    V. Mitić, Z. Nikolić, and L. Zivković, Electr. Energy 9, 255 (1996).Google Scholar
  3. 3.
    A.F.L. Almeida, P.B.A. Fechine, J.C. Góes, M.A. Valente, M.A.R. Miranda, and A.S.B. Sombra, Mater. Sci. Eng. B 111, 113 (2004).CrossRefGoogle Scholar
  4. 4.
    C. Li, K.C.K. Soh, and P. Wu, J. Alloy. Compd. 372, 40 (2004).CrossRefGoogle Scholar
  5. 5.
    M.A. Subramanian and A.W. Sleight, Solid State Sci. 4, 347 (2002).CrossRefGoogle Scholar
  6. 6.
    L.S. Cavalcante, M.A. Santos, J.C. Sczancoski, L.G.P. Simões, M.R.M.C. Santos, J.A. Varela, P.S. Pizani, and E. Longo, J. Phys. Chem. Solids 69, 1782 (2008).CrossRefGoogle Scholar
  7. 7.
    A.F.L. Almeida, R.S. de Oliveira, J.C. Góes, J.M. Sasaki, J.M. Filho, and A.S.B. Sombra, Mater. Sci. Eng. B 96, 275 (2002).CrossRefGoogle Scholar
  8. 8.
    M.A. Subramanian, D. Li, N. Duran, B.A. Reisner, and A.W. Sleight, J. Solid State Chem. 323, 151 (2000).Google Scholar
  9. 9.
    A.P. Ramirez, M.A. Subramanian, M. Gardel, G. Blumberg, D. Li, T. Vogt, and S.M. Shapiro, Solid State Comm. 115, 217 (2000).CrossRefGoogle Scholar
  10. 10.
    C.C. Homes, T. Vogt, S.M. Shapiro, S. Wakimoto, and A.P. Ramirez, Science 293, 673 (2001).CrossRefGoogle Scholar
  11. 11.
    M.A. Subramanian, D. Li, N. Duan, B.A. Reisner, and A.W. Sleight, J. Solid State Chem. 151, 323 (2000).CrossRefGoogle Scholar
  12. 12.
    E.A. Nenasheva and N.F. Kartenko, J. Eur. Ceram. Soc. 21, 2697 (2001).CrossRefGoogle Scholar
  13. 13.
    C.Y. Chung, Y.H. Chang, Y.S. Chang, and G.J. Chen, J. Alloy. Compd 385, 298 (2004).CrossRefGoogle Scholar
  14. 14.
    A.F.L. Almeida, P.B.A. Fechine, L.C. Kretly, and A.S.B. Sombra, J. Mater. Sci. 41, 4623 (2006).CrossRefGoogle Scholar
  15. 15.
    A.C. Larson and R.B. Von Dreele, GSAS, LAUR 86, 748 (2004).Google Scholar
  16. 16.
    S. Music, M. Gotic, M. Ivanda, S. Popovic, A. Turkovic, R. Trojko, A. Sekulic, and K. Furic, Mater. Sci. Eng. B 47, 33 (1997).CrossRefGoogle Scholar
  17. 17.
    D. Valim, A.G.S. Filho, P.T.C. Freire, S.B. Fagan, A.P. Ayala, J.M. Filho, A.F.L. Almeida, P.B.A. Fechine, A.S.B. Sombra, J. Staun, and L. Olsen, Phys. Rev. B 70, 132103 (2004).CrossRefGoogle Scholar
  18. 18.
    N. Kolev, et al., Phys. Rev. B 66, 132102 (2002).CrossRefGoogle Scholar
  19. 19.
    L. He, et al., Phys. Rev. B 65, 214112 (2002).CrossRefGoogle Scholar
  20. 20.
    L. He, et al., Phys. Rev. B 67, 012103 (2003).CrossRefGoogle Scholar
  21. 21.
    K.C. Kao, Dielectric Phenomena in Solids (San Diego: Elsevier, 2004).Google Scholar
  22. 22.
    P.B.A. Fechine, A.F.L. Almeida, F.N.A. Freire, M.R.P. Santos, F.M.M. Pereira, R. Jimenez, J. Mendiola, and A.S.B. Sombra, Mater. Chem. Phys. 96, 402 (2006).CrossRefGoogle Scholar
  23. 23.
    A.F.L. Almeida, P.B.A. Fechine, J.M. Sasaki, A.P. Ayala, J.C. Góes, D.L. Pontes, W. Margulis, and A.S.B. Sombra, Solid State Sci. 6, 267 (2004).CrossRefGoogle Scholar
  24. 24.
    A.J. Moulson and J.M. Herbert, Electroceramics: Materials, Properties, Applications (Chichester: Wiley, 2003).CrossRefGoogle Scholar
  25. 25.
    E. Barsoukov and J.R. Macdonald, Impedance Spectroscopy: Theory, Experiment, and Applications, 2nd ed. (New Jersey: Wiley, 2005).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2014

Authors and Affiliations

  • E. J. J. Mallmann
    • 1
  • M. A. S. Silva
    • 2
  • A. S. B. Sombra
    • 2
  • M. A. Botelho
    • 3
  • S. E. Mazzetto
    • 1
  • A. S. de  Menezes
    • 4
  • A. F. L. Almeida
    • 5
  • P. B. A. Fechine
    • 1
    Email author
  1. 1.Grupo de Química de Materiais Avançados (GQMAT) – Departamento de Química Analítica e Físico-QuímicaUniversidade Federal do Ceará – UFCFortalezaBrazil
  2. 2.Laboratório de Telecomunicações e Ciência e Engenharia de Materiais (LOCEM) – Departamento de FísicaUniversidade Federal do CearáFortalezaBrazil
  3. 3.Post-Graduation Program in BiotechnologyUniversity PotiguarNatal Brazil
  4. 4.Departamento de Física, CCETUniversidade Federal do MaranhãoSão LuísBrazil
  5. 5.Departamento de Engenharia Mecânica e de Produção (DEMP), Centro de TecnologiaUniversidade Federal do CearáFortaleza Brazil

Personalised recommendations