Advertisement

Journal of Electronic Materials

, Volume 44, Issue 6, pp 1540–1546 | Cite as

Influence of the Exchange–Correlation Functional on the Electronic Properties of ZnSb as a Promising Thermoelectric Material

  • Kinga Niedziółka
  • Philippe JundEmail author
Article

Abstract

Orthorhombic ZnSb has been investigated by means of first-principles calculations. This compound, like many other semiconductors, suffers from an inadequate ab initio description of its electronic properties (especially the width of the bandgap). As a result, its transport properties are also miscalculated. To avoid such disagreement between experimental and theoretical data, the hybrid functional HSE06 has been applied. This paper thus presents a comparison of the structural, electronic, and transport properties of thermoelectric zinc antimonide, calculated using standard density functional theory (DFT) as well as using the HSE06 hybrid functional. By adding a certain amount of exact Hartree–Fock exchange interaction to the DFT description, it is possible to improve the accuracy of the results. We prove that the HSE06 method provides a good compromise between accuracy and computational cost, and leads to a better description of the electronic and transport properties.

Keywords

Thermoelectric material ab initio calculations hybrid functional electronic properties zinc antimonide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105–114 (2008).CrossRefGoogle Scholar
  2. 2.
    G.S. Nolas, J.L. Cohn, G.A. Slack, and S.B. Schujman, Appl. Phys. Lett. 73, 178–180 (1998).CrossRefGoogle Scholar
  3. 3.
    B.C. Sales, D. Mandrus, and R.K. Williams, Science 272, 1325–1328 (1996).CrossRefGoogle Scholar
  4. 4.
    T. Caillat, J.P. Fleurial, and A. Borshchevsky, J. Phys. Chem. Solids 58, 1119 (1997).CrossRefGoogle Scholar
  5. 5.
    L. Bjerg, G.K.H. Madsen, and B.B. Iversen, Chem. Mater. 24, 2111–2116 (2012).CrossRefGoogle Scholar
  6. 6.
    P. Jund, R. Viennois, X. Tao, K. Niedziolka, and J.C. Tédenac, Phys. Rev. B 85, 224105 (2012).CrossRefGoogle Scholar
  7. 7.
    D. Benson, O.F. Sankey, and U. Häussermann, Phys. Rev. B 84, 125211 (2011).CrossRefGoogle Scholar
  8. 8.
    P.H.M. Böttger, G.S. Pomrehn, G.J. Snyder, and T.G. Finstad, Phys. Status Solidi A 208, 2753–2759 (2011).CrossRefGoogle Scholar
  9. 9.
    P.J. Shaver and J. Blair, Phys. Rev. 141, 649 (1966).CrossRefGoogle Scholar
  10. 10.
    H. Komiya, K. Masumoto, and H.Y. Fan, Phys. Rev. 133, A1679 (1964).CrossRefGoogle Scholar
  11. 11.
    E.K. Arushanov, Prog. Cryst. Growth Charact. 13, 1–38 (1986).CrossRefGoogle Scholar
  12. 12.
    A. Abou-Zeid and G. Schneider, Phys. Status Solidi A 6, K101–K103 (1971).CrossRefGoogle Scholar
  13. 13.
    W. Kohn and L.J. Sham, Phys. Rev. 140, A1133 (1965).CrossRefGoogle Scholar
  14. 14.
    J.P. Perdew, Phys. Rev. Lett. 55, 1665–1668 (1985).CrossRefGoogle Scholar
  15. 15.
    J. Heyd, G.E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 118, 8207 (2003).CrossRefGoogle Scholar
  16. 16.
    P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).CrossRefGoogle Scholar
  17. 17.
    P. Jund and R. Jullien, Phys. Rev. Lett. 83, 2210–2213 (1999).CrossRefGoogle Scholar
  18. 18.
    J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle Scholar
  19. 19.
    J.P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).CrossRefGoogle Scholar
  20. 20.
    J. Yang, H. Li, T. Wu, W. Zhang, L. Chen, and J. Yang, Adv. Funct. Mater. 18, 2880–2888 (2008).CrossRefGoogle Scholar
  21. 21.
    S. Botti, D. Kammerlander, and M.A.L. Marques, Appl. Phys. Lett. 98, 241915 (2011).CrossRefGoogle Scholar
  22. 22.
    S.Z. Karazhanov, P. Ravindran, A. Kjekhus, and H. Fjellvåg, J. Cryst. Growth 287, 162–168 (2006).CrossRefGoogle Scholar
  23. 23.
    R. Khenata, Comput. Mater. Sci. 38, 29–38 (2006).CrossRefGoogle Scholar
  24. 24.
    J. Heyd, J.E. Peralta, and G.E. Scuseria, J. Chem. Phys. 123, 174101 (2005).CrossRefGoogle Scholar
  25. 25.
    A.D. Becke, J. Chem. Phys. 98, 5648 (1993).CrossRefGoogle Scholar
  26. 26.
    J. Heyd and G.E. Scuseria, J. Chem. Phys. 120, 7274 (2004).CrossRefGoogle Scholar
  27. 27.
    J. Paier, M. Marsman, K. Hummer, and G. Kresse, J. Chem. Phys. 124, 154709 (2006).CrossRefGoogle Scholar
  28. 28.
    J. Heyd, G.E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 124, 219906 (2006).CrossRefGoogle Scholar
  29. 29.
    J. Heyd and G.E. Scuseria, J. Chem. Phys. 121, 1187 (2004).CrossRefGoogle Scholar
  30. 30.
    P.E. Blöchl, Phys. Rev. B 50, 17953 (1994).CrossRefGoogle Scholar
  31. 31.
    G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).CrossRefGoogle Scholar
  32. 32.
    J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1997).CrossRefGoogle Scholar
  33. 33.
    W. Tang, E. Sanville, and G. Henkelman, J. Phys.: Condens. Matter 21, 084204 (2009).Google Scholar
  34. 34.
    E. Sanville, S.D. Kenny, R. Smith, and G. Henkelman, J.␣Comput. Chem. 28, 899–908 (2007).CrossRefGoogle Scholar
  35. 35.
    G. Henkelman, A. Arnaldsson, and H. Jónsson, Comput. Mater. Sci. 36, 254–360 (2006).Google Scholar
  36. 36.
    S. Lany and A. Zunger, Phys. Rev. B 78, 235104 (2008).CrossRefGoogle Scholar
  37. 37.
    G.K.H. Madsen and D.J. Singh, Comput. Phys. Commun. 175, 67–71 (2006).CrossRefGoogle Scholar
  38. 38.
    F.L. Carter and R. Mazelsky, J. Phys. Chem. Solids 25, 571–581 (1964).CrossRefGoogle Scholar
  39. 39.
    L. Bjerg, G.K.H. Madsen, and B.B. Iversen, Chem. Mater. 23, 3907–3914 (2011).CrossRefGoogle Scholar
  40. 40.
    L. Mlanarikova and A. Triska, Czech J. Phys. B 20, 63 (1970).CrossRefGoogle Scholar
  41. 41.
    P.H.M. Böttger, S. Diplas, E. Flage-Larsen, Ø. Prytz, and T.G. Finstad, J. Phys.: Condens. Matter 23, 265502 (2011).Google Scholar
  42. 42.
    J. Millman and C.C. Halkias, Integrated Electronics: Analog and Digital Circuits and Systems (New York: McGraw-Hill, 1972).Google Scholar
  43. 43.
    P. Jund, K. Niedziolka, and R. Viennois, Phys. Rev. B 88, 174302 (2013).CrossRefGoogle Scholar
  44. 44.
    K. Niedziolka, R. Pothin, F. Rouessac, R.M. Ayral, and P. Jund, J. Phys.: Condens. Matter 26, 365401 (2014).Google Scholar
  45. 45.
    C. Okamura, T. Ueda, and K. Hasezaki, Mater. Trans. 5, 860–862 (2012).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2014

Authors and Affiliations

  1. 1.ICGM-Université Montpellier 2MontpellierFrance

Personalised recommendations