Journal of Electronic Materials

, Volume 44, Issue 6, pp 1483–1490 | Cite as

Thermoelectric Properties of Pseudogap Ti10Ru19B8 and Ti9TM2Ru18B8 (TM: Cr-Cu) Compounds

Article

The thermoelectric properties of ternary Ti10Ru19B8 and quaternary Ti9TM2Ru18B8 (TM: Cr, Mn, Fe, Co, Ni, Cu) compounds were investigated in the temperature range from 373 K to 973 K. They form pseudogaps in the electronic densities of states near the Fermi level, E F, which is suitable for thermoelectric materials. We synthesized crack-free pellet samples using arc-melting followed by spark plasma sintering. A maximum dimensionless figure of merit zT max was 0.09 at 973 K for Ti10Ru19B8 whereas a large power factor of 1.4 mW/m K2 was obtained at that temperature. The phonon thermal conductivity decreased through TM substitutions; however, the power factor also decreased due to an additional electronic density of states originated from TM d-states around E F; that is, excitations of both holes and electrons.

Keywords

Thermoelectric properties pseudogap complex structure borides spark plasma sintering electronic structure calculation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work is supported by the Thermal & Electric Energy Technology Foundation (TEET) and KAKENHI Nos. 24360262 and 26709051 from JSPS.

References

  1. 1.
    G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).CrossRefGoogle Scholar
  2. 2.
    Y. Takagiwa and K. Kimura, Sci. Tech. Adv. Mater. 15, 044802 (2014).CrossRefGoogle Scholar
  3. 3.
    Y. Nishino, H. Sumi, and U. Mizutani, Phys. Rev. B 71, 094425 (2005).CrossRefGoogle Scholar
  4. 4.
    Y. Takagiwa, K. Kitahara, and K. Kimura, J. Appl. Phys. 113, 023713 (2013).CrossRefGoogle Scholar
  5. 5.
    Y. Takagiwa, Y. Matsuura, and K. Kimura, J. Electron. Mater. 43, 2206 (2014).CrossRefGoogle Scholar
  6. 6.
    Y. Pei, X. Shi, A.D. LaLonde, H. Wang, L. Chen, and G.J. Snyder, Nature (Lond.) 473, 66 (2011).CrossRefGoogle Scholar
  7. 7.
    H. Wang, Z.M. Gibbs, Y. Takagiwa, and G.J. Snyder, Energy Environ. Sci. 7, 804 (2014).CrossRefGoogle Scholar
  8. 8.
    M.A. Avila, K. Suekuni, K. Umeo, H. Fukuoka, S. Yamanaka, and T. Takabatake, Appl. Phys. Lett. 92, 041901 (2008).CrossRefGoogle Scholar
  9. 9.
    G.S. Nolas, M. Kaeser, R.T. Littleton IV, and T.M. Tritt, Appl. Phys. Lett. 77, 1855 (2000).CrossRefGoogle Scholar
  10. 10.
    E.S. Toberer, A. Zevalkink, and G.J. Snyder, J. Mater. Chem. 21, 15843 (2011).CrossRefGoogle Scholar
  11. 11.
    M.G. Kanatzidis, Chem. Mater. 22, 648 (2010).CrossRefGoogle Scholar
  12. 12.
    B.P.T. Fokwa, G.D. Samolyuk, G.J. Miller, and R. Donskowski, Inorg. Chem. 47, 2113 (2008).CrossRefGoogle Scholar
  13. 13.
    B.P.T. Fokwa and Z. Anorg, Allg. Chem. 635, 2258 (2009).CrossRefGoogle Scholar
  14. 14.
    B.P.T. Fokwa, C. Goerens, and M. Gilleßen, Z. Kristallogr. 225, 180 (2010).CrossRefGoogle Scholar
  15. 15.
    C. Goerens, J. Brgoch, G.J. Miller, and B.P.T. Fokwa, Inorg. Chem. 50, 6289 (2011).CrossRefGoogle Scholar
  16. 16.
    J. Brgoch, C. Goerens, B.P.T. Fokwa, and G.J. Miller, J. Am. Chem. Soc. 133, 683 (2011).CrossRefGoogle Scholar
  17. 17.
    C.R. Hubbard, E.H. Evans, and D.K. Smith, J. Appl. Cryst. 9, 169 (1976).CrossRefGoogle Scholar
  18. 18.
  19. 19.
  20. 20.
    C. Goerens, J. Brgoch, G.J. Miller, and B.P.T. Fokwa, J. Solid State Chem. 204, 283 (2013).CrossRefGoogle Scholar
  21. 21.
    K. Edagawa, K. Kajiyama, R. Tamura, and S. Takeuchi, Mater. Sci. Eng. A 312, 293 (2001).CrossRefGoogle Scholar
  22. 22.
    Y. Takagiwa, T. Kamimura, S. Hosoi, J.T. Okada, and K. Kimura, Z. Kristallogr. 224, 21 (2009).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2014

Authors and Affiliations

  • Y. Takagiwa
    • 1
  • T. Yoshida
    • 1
  • D. Yanagihara
    • 1
  • K. Kimura
    • 1
  1. 1.Department of Advanced Materials ScienceThe University of TokyoChibaJapan

Personalised recommendations