Journal of Electronic Materials

, Volume 43, Issue 11, pp 4011–4017 | Cite as

Effects of Substrate Temperature on the Microstructure and Morphology of CdZnTe Thin Films


The effects of substrate temperature on the microstructure and morphology of CdZnTe thin films were investigated in detail. The CdZnTe thin films were deposited on glass substrates at 200°C, 300°C and 400°C by radio frequency magnetron sputtering and annealed at 450°C for an hour under N2 ambient at atmospheric pressure. The microstructure and morphology of the CdZnTe films were analyzed by using x-ray diffractometry, scanning electron microscopy, energy dispersive x-ray spectroscopy and atomic force microscopy. The effects of substrate temperature on transmission spectra of the CdZnTe films were also investigated. The experimental results show that the optimum morphology and crystalline thin film structures were achieved at 400°C growth temperature. At higher substrate temperatures, atomic mobility and diffusion are promoted, which can stabilize the uniformity and crystallite size. The crystalline grains enlarge and the surface morphology becomes smoother due to growth of grains in the CdZnTe thin films. In addition, the transmission spectra of the films are consistent with the morphological changes. It may be concluded that substrate temperature in growing CdZnTe films has a substantial effect on morphological characteristics, and desired quality of the CdZnTe thin films may be fabricated at higher substrate temperatures.


Surface morphology substrate temperature CdZnTe thin films AFM XRD 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors would like to thank Middle East Technical University and Abant Izzet Baysal University for providing experimental facilities and their generous support. This work is supported by Abant Izzet Baysal University under Contract Number: AIBU, BAP.2009.03.02.319, and the Ministry of Development of Turkey under Contract Number: 2012K120360.


  1. 1.
    T.O. Tumer, S. Yin, V. Cajipe, H. Flores, J. Mainprize, G. Mawdsley, J.A. Rowlands, M.J. Yaffe, E.E. Gordon, W.J. Hamilton, D. Rhiger, S.O. Kasap, P. Sellin, and K.S. Shah, Nucl. Instrum. Methods A 497, 21 (2003).CrossRefGoogle Scholar
  2. 2.
    E. Yilmaz, Energy Source A 34, 332 (2012).CrossRefGoogle Scholar
  3. 3.
    I. Nasieka, L. Rashkovetskyi, O. Strilchuk, and B. Danilchenko, Nucl. Instrum. Methods A 648, 290 (2011).CrossRefGoogle Scholar
  4. 4.
    R. Sudharsanan, G.D. Vakerlis, and N.H. Karam, J. Electron. Mater. 26, 745 (1997).CrossRefGoogle Scholar
  5. 5.
    P.J. Sellin, Nucl. Instrum. Methods A 563, 1 (2006).CrossRefGoogle Scholar
  6. 6.
    O. Zelaya-Angel, J.G. Mendoza-Alvarez, M. Becerril, H. Navarro-Contreras, and L. Tirado-Mejia, J. Appl. Phys. 95, 6284 (2004).CrossRefGoogle Scholar
  7. 7.
    G.Q. Zha, H. Zhou, J.N. Gao, T. Wang, and W.Q. Jie, Vacuum 86, 242 (2011).CrossRefGoogle Scholar
  8. 8.
    S. Stolyarova, F. Edelman, A. Chack, A. Berner, P. Werner, N. Zakharov, M. Vytrykhivsky, R. Beserman, R. Weil, and Y. Nemirovsky, J. Phys. D Appl. Phys. 41, 065402 (2008).CrossRefGoogle Scholar
  9. 9.
    B.L. Yao, J. Huang, L.M. Cai, K. Tang, B. Ren, J. Zhou, J. Le, L.Y. Shen, Y. Zhu, and L.J. Wang, Key Eng. Mater. 544, 226 (2013).CrossRefGoogle Scholar
  10. 10.
    J. Huang, L.J. Wang, K. Tang, R. Xu, J.J. Zhang, Y.B. Xia, and X.G. Lu, Phys. Procedia 32, 161 (2012).CrossRefGoogle Scholar
  11. 11.
    D.M. Zeng, W.Q. Jie, H. Zhou, Y.G. Yang, and F. Chen, Adv. Eng. Mater. 194–196, 2312 (2011).Google Scholar
  12. 12.
    E. Yilmaz, E. Tugay, A. Aktag, I. Yildiz, M. Parlak, and R. Turan, J. Alloys Compd. 545, 90 (2012).CrossRefGoogle Scholar
  13. 13.
    M. Sridharan, M. Mekaladevi, S.K. Narayandass, D. Mangalaraj, and H.C. Lee, Cryst. Res. Technol. 39, 328 (2004).CrossRefGoogle Scholar
  14. 14.
    R. Dhere, T. Gessert, J. Zhou, S. Asher, J. Pankow, and H. Moutinho, Mater. Res. Soc. Symp. Proc. 763, 409 (2003).Google Scholar
  15. 15.
    G.G. Rusu, M. Rusu, and M. Girtan, Vacuum 81, 1476 (2007).CrossRefGoogle Scholar
  16. 16.
    C.B. Wang, R. Tu, T. Goto, Q. Shen, and L.M. Zhang, Mater. Chem. Phys. 113, 130 (2009).CrossRefGoogle Scholar
  17. 17.
    J. Mass, P. Bhattacharya, and R.S. Katiyar, Mater. Sci. Eng. B Solid 103, 9 (2003).CrossRefGoogle Scholar
  18. 18.
    E. Cetinorgu, S. Goldsmith, and R.L. Boxman, J. Cryst. Growth 299, 259 (2007).CrossRefGoogle Scholar
  19. 19.
    W. Kern and D.A. Puotinen, RCA Rev. 31, 187 (1970).Google Scholar
  20. 20.
    K.A. Reinhardt and W. Kern, Handbook of Silicon Wafer Cleaning Technology, 2nd ed. (Norwich, NY: William Andrew, 2008).Google Scholar
  21. 21.
    S.K. Pandey, S.K. Pandey, C. Mukherjee, P. Mishra, M. Gupta, S.R. Barman, S.W. D’Souza, and S. Mukherjee, J.␣Mater. Sci. Mater. Electron. 24, 2541 (2013).CrossRefGoogle Scholar
  22. 22.
    Y.J. Li, G.L. Ma, X.N. Zhan, and W.Q. Jie, J. Electron. Mater. 31, 834 (2002).CrossRefGoogle Scholar
  23. 23.
    Z.Z. Bai and D.L. Wang, Phys. Status Solidi A 209, 1982 (2012).CrossRefGoogle Scholar
  24. 24.
    M. Gulen, G. Yildirim, S. Bal, A. Varilci, I. Belenli, and M. Oz, J. Mater. Sci. Mater. Electron. 24, 467 (2013).CrossRefGoogle Scholar
  25. 25.
    B.D. Cullity, Element of X-ray Diffraction, 3rd ed. (Reading, MA: Addition-Wesley, 2001).Google Scholar
  26. 26.
    S.Y. Yang, B.Y. Man, M. Liu, C.S. Chen, X.G. Gao, C.C. Wang, and B. Hu, Appl. Surf. Sci. 257, 3856 (2011).CrossRefGoogle Scholar
  27. 27.
    S.K. Sharma and S. Mohan, Appl. Surf. Sci. 282, 492 (2013).CrossRefGoogle Scholar
  28. 28.
    S.S. Lekshmy, G.P. Daniel, and K. Joy, Appl. Surf. Sci. 274, 95 (2013).CrossRefGoogle Scholar
  29. 29.
    X.Q. Wei, J.Z. Huang, M.Y. Zhang, Y. Du, and B.Y. Man, Mater. Sci. Eng. B Adv. 166, 141 (2010).CrossRefGoogle Scholar
  30. 30.
    V. Jayasree, R. Ratheesh, P.P. Rao, P. Koshy, V. Ganesan, V.U. Nayar, and V.P.M. Pillai, Phys. Status Solidi A 206, 2801 (2009).Google Scholar
  31. 31.
    G.Q. Li, W.Q. Jie, Z. Gu, and H. Hua, Chin. Phys. Lett. 20, 1600 (2003).CrossRefGoogle Scholar
  32. 32.
    G.Q. Li, W.Q. Jie, T. Wang, and G. Yang, Nucl. Instrum. Methods A 534, 511 (2004).CrossRefGoogle Scholar
  33. 33.
    A.K. Garg, M. Srivastava, R.C. Narula, R.K. Bagai, and V. Kumar, J. Cryst. Growth 260, 148 (2004).CrossRefGoogle Scholar
  34. 34.
    R.G. Solanki, Indian J. Pure Appl. Phys. 48, 133 (2010).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2014

Authors and Affiliations

  1. 1.Malatya Junior Technical CollegeInonu UniversityMalatyaTurkey
  2. 2.Physics DepartmentAbant Izzet Baysal UniversityBoluTurkey
  3. 3.Nuclear Radiation Detectors Research and Development CenterBoluTurkey

Personalised recommendations