Advertisement

Journal of Electronic Materials

, Volume 43, Issue 10, pp 3844–3851 | Cite as

Τhe Effect of Ge on Mg2Si0.6−x Sn0.4Ge x Materials

  • N. Vlachos
  • E. Hatzikraniotis
  • C.N. Mihailescu
  • J. Giapintzakis
  • Th. KyratsiEmail author
Article

In this work, we investigate the influence of the introduction of Ge on the thermoelectric properties of Bi-doped quaternary Mg2Si0.6−x Sn0.4Ge x alloys. Mg2Si0.58−x Sn0.4Bi0.02Ge x materials were fabricated by a low temperature reaction method, followed by hot pressing. Structure and phase composition of the obtained hot-pressed pellets were observed by x-ray diffraction. Morphology and chemical composition were monitored by scanning electron microscopy equipped with energy-dispersive x-ray spectroscopy. The results indicate a natural tendency of the material to phase separate into Si-rich, Sn-rich, and Ge-rich regions, which seem to become finer in size with Ge concentration. The compounds have been characterized by electrical conductivity, Seebeck coefficient, and thermal conductivity measurements in the temperature range of 300–823 K. The effect of Ge in the lattice thermal conductivity is discussed in terms of solid solution formation as well as effective medium theory.

Keywords

Phase separation high figure of merit thermal conductivity effective medium theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Scherrer and S. Scherrer, in Thermoelectrics Handbook Macro to Nano, ed. D.M. Rowe (Boca Raton: CRC Press, 2005)Google Scholar
  2. 2.
    C. Uher, Thermoelectrics Handbook Macro to Nano, ed. D.M. Rowe (Boca Raton: CRC Press, 2005)Google Scholar
  3. 3.
    Y. Okamoto and H. Takiguchi, Modules, systems, and applications in thermoelectrics, ed. D.M. Rowe (Boca Raton: CRC Press, 2012)Google Scholar
  4. 4.
    V.K. Zaitsev, M.I. Fedorov, I.S. Eremin, and E.A. Gurieva, Thermoelectrics Handbook: Macro to Nano Structured Materials (New York: CRC Taylor & Francis LLC, 2006).Google Scholar
  5. 5.
    V.K. Zaitsev, M.I. Fedorov, E.A. Gurieva, I.S. Eremin, P.P. Konstantinov, A.Y. Samunin, and M.V. Vedernikov, Phys. Rev. B 74, 4 (2006).CrossRefGoogle Scholar
  6. 6.
    Y. Isoda, T. Nagai, H. Fujiu, Y. Imai, and Y. Shinohara, in Proceedings of the 25th International Conference on Thermoelectrics, IEEE Catalog No. 06TH89312008, p. 406–410.Google Scholar
  7. 7.
    Q. Zhang, J. He, T.J. Zhu, S.N. Zhang, X.B. Zhao, and T.M. Tritt, Appl. Phys. Lett. 93, 10 (2008).Google Scholar
  8. 8.
    W. Liu, X.F. Tang, and J. Sharp, J. Phys. D Appl. Phys. 43, 8 (2010).Google Scholar
  9. 9.
    W. Liu, X.F. Tang, H. Li, J. Sharp, X. Zhou, and C. Uher, Chem. Mater. 23, 23 (2011).Google Scholar
  10. 10.
    Q. Zhang, J. He, X.B. Zhao, S.N. Zhang, T.J. Zhu, H. Yin, and T.M. Tritt, J. Phys. D Appl. Phys. 41, 18 (2008).Google Scholar
  11. 11.
    G.S. Nolas, D. Wang, and M. Beekman, Phys. Rev. B 76, 23 (2007).CrossRefGoogle Scholar
  12. 12.
    T. Dasgupta, C. Stiewe, A.J. Zhou, L. Boettcher, and E. Müeller, Phys. Rev. B 83, 23 (2011).CrossRefGoogle Scholar
  13. 13.
    H.L. Gao, T.J. Zhu, X.X. Liu, L.X. Chen, and X.B. Zhao, J. Mater. Chem. 21, 16 (2011).Google Scholar
  14. 14.
    S.K. Bux, M.T. Yeung, E.S. Toberer, G.J. Snyder, R.B.␣Kaner, and J.P. Fleurial, J. Mater. Chem. 21, 12 (2011).CrossRefGoogle Scholar
  15. 15.
    G.A. Slack, CRC Handbook of Thermoelectric (Boca Raton: CRC Press LLC, 1995).Google Scholar
  16. 16.
    I. Jung, D. Kang, W. Park, N. J. Kim, and S. Ahn, CALPHAD: Comput. Coupling Phase Diagrams Thermochem. 31 (2007)Google Scholar
  17. 17.
    E.N. Nikitin, E.N. Tkalenko, V.K. Zaitsev, A.I. Zaslavskii, and A.K. Kuznetsov, Izv. Akad. Nauk SSSR, Neorg. Mater. 4 (1968)Google Scholar
  18. 18.
    Sh. Muntyanu, E.B. Sokolov, and E.S. Makarov, Izv. Akad. Nauk SSSR, Neorg. Mater. 2, (1966)Google Scholar
  19. 19.
    W. Liu, Q. Zhang, K. Ying, H. Chi, X. Zhou, X. Tang, and C. Uher, J. Solid State Chem. 203 (2013)Google Scholar
  20. 20.
    M. Søndergaard, M. Christensen, K.A. Borup, H. Yin, and B.B. Iversen, J. Mater. Sci. 48 (2013)Google Scholar
  21. 21.
    Q. Zhang, H. Yin, X.B. Zhao, J. He, X.H. Ji, T.J. Zhu, and T.M. Tritt, Phys. Status Solidi 205, 7 (2008).Google Scholar
  22. 22.
    A.U. Khan, N. Vlachos, and T. Kyratsi, Scr. Mater. 69, 8 (2013).CrossRefGoogle Scholar
  23. 23.
    H. Yin, X.-B. Zhao, Q. Zhang, and T.-J. Zhu, Int. J. Miner. Metall. Mater. 16, 5 (2009).CrossRefGoogle Scholar
  24. 24.
    W. Liu, X. Tang, H. Li, K. Yin, J. Sharp, X. Zhou, and C. Uher, J. Mater. Chem. 22, 13 (2012).Google Scholar
  25. 25.
    E.N. Nikitin, R.N. Tkalenko, V.K. Zaitsev, A.I. Zaslavskii, and A.K. Kuznetsov, Inorg. Mater. 4 (1968)Google Scholar
  26. 26.
    R. Viennois, C. Colinet, P. Jund, and J-C Tédenac, Intermetallics 31 (2012)Google Scholar
  27. 27.
    R.J. Labotz, D.R. Mason, and D.F. O’Kane, J. Electrochem. Soc. 110, 2 (1963).Google Scholar
  28. 28.
    E.S. Makarov, S. Muntyanu, E.B. Sokolov, and G.A. Slesareva, Inorg Mater. 2 (1966)Google Scholar
  29. 29.
    W. Liu, X. Tan, K. Yin, H. Liu, X. Tang, J. Shi, Q. Zhang, and C. Uher, Phys. Rev. Lett. 108, 16 (2012).Google Scholar
  30. 30.
    M.I. Fedorov, V.K. Zaitsev, and G.N. Isachenko, Solid State Phen. 170 (2011)Google Scholar
  31. 31.
    Z. Du, T. Zhu, and X. Zhao, Mater. Lett. 66, 76 (2012).CrossRefGoogle Scholar
  32. 32.
    W. Luo, M. Yang, F. Chen, Q. Shen, H. Jiang, and L. Zhang, Mater. Trans. JIM 51 (2010)Google Scholar
  33. 33.
    P.G. Klemens, Phys. Rev. B 119 (1960)Google Scholar
  34. 34.
    S. Adachi, J. Appl. Phys. 54, 4 (1983).Google Scholar
  35. 35.
    S. Adachi, J. Appl. Phys. 102, 6 (2007).Google Scholar
  36. 36.
    J. Sonntag, J. Phys. Condens. Matter 21, 17 (2009).CrossRefGoogle Scholar
  37. 37.
    T. Irie, Jpn. J. Appl. Phys. 5 (1966)Google Scholar
  38. 38.
    J. Androulakis, I. Todorov, J. He, D.-Y. Chung, V. Dravid, and M.G. Kanatzidis, J. Am. Chem. Soc. 133, 50 (2011).CrossRefGoogle Scholar

Copyright information

© TMS 2014

Authors and Affiliations

  • N. Vlachos
    • 1
    • 2
  • E. Hatzikraniotis
    • 3
  • C.N. Mihailescu
    • 1
    • 2
  • J. Giapintzakis
    • 1
    • 2
  • Th. Kyratsi
    • 1
    • 2
    Email author
  1. 1.Department of Mechanical and Manufacturing EngineeringUniversity of CyprusNicosiaCyprus
  2. 2.Nanotechnology Research CenterUniversity of CyprusNicosiaCyprus
  3. 3.Department of PhysicsAristotle University of ThessalonikiThessaloníkiGreece

Personalised recommendations