Journal of Electronic Materials

, Volume 43, Issue 10, pp 3838–3843 | Cite as

Multilayered Ge/SiGe Material in Microfabricated Thermoelectric Modules

  • A. Samarelli
  • L. Ferre Llin
  • S. Cecchi
  • D. Chrastina
  • G. Isella
  • T. Etzelstorfer
  • J. Stangl
  • E. Muller Gubler
  • J. M. R. Weaver
  • P. Dobson
  • D. J. Paul
Article

Abstract

Results for low dimensional p-type Ge/SiGe superlattices with Ge quantum wells of 3.43 nm are presented. A range of microfabricated test structures have been developed to characterise the cross-plane electrical and thermal properties of the Ge/SiGe heterostructures. These superlattices were directly grown on 100-mm-diameter silicon wafers by a chemical vapour deposition growth system with rates up to 6 nm/s. Quantum well and quantum mechanical tunnel barriers with dimensions down to \(\sim1\)nm have been designed, grown and tested; they demonstrate a ZT of 0.08 ± 0.011 and power factor of 1.34 ± 0.15 m W m−1 K−2 at 300 K. A complete microfabricated module using indium bump-bonding is reported together with preliminary results on unoptimised material and leg dimensions. Routes to optimise the material and modules are discussed.

Keywords

Thermolectrics silicon germanium vertical structure thermolectric module superlattice 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D.W. Rowe (ed.), Thermoelectric Handbook: Micro to Nano (CRC Press/Taylor and Francis, Boca Raton, FL, 2006)Google Scholar
  2. 2.
    J.P. Dismukes, L. Ekstrom, E.F. Steigmeier, I. Kudman, D.S. Beers, J. Appl. Phys. 35, 2899 (1964)CrossRefGoogle Scholar
  3. 3.
    J.R. Watling, D.J. Paul, J. Appl. Phys. 110, 114508 (2011)CrossRefGoogle Scholar
  4. 4.
    L.D. Hicks, M.S. Dresselhaus, Phys. Rev. B 47, 12727 (1993)CrossRefGoogle Scholar
  5. 5.
    L.D. Hicks, T.C. Harman, M.S. Dresselhaus, Appl. Phys. Lett. 63, 3230 (1993)CrossRefGoogle Scholar
  6. 6.
    D.J. Paul, Laser & Photon. Rev. 4, 610 (2010)CrossRefGoogle Scholar
  7. 7.
    D.J. Paul, Elec. Lett. 45, 582 (2009)CrossRefGoogle Scholar
  8. 8.
    A. Samarelli, L. Ferre, S. Cecchi, J. Frigerio, T. Etzelstorfer, E. Müller, Y. Zhang, J.R. Watling, D. Chrastina, G. Isella, J. Stangl, J.P. Hague, J.M.R. Weaver, P. Dobson, D.J. Paul, J. Paul J. Appl. Phys. 113, 233704 (2013)CrossRefGoogle Scholar
  9. 9.
    A. Samarelli, L. Ferre Llin, Y. Zhang, J.M.R. Weaver, P. Dobson, S. Cecchi, D. Chrastina, G. Isella, T. Etzelstorfer, J. Stangl, E. Müller, J. Electron. Mater. 42, 1449 (2013)CrossRefGoogle Scholar
  10. 10.
    S.C. Cecchi, T. Etzelstorfer, E. Müller, A. Samarelli, L. Ferre Llin, D. Chrastina, G. Isella, J. Stangl, J.M.R. Weaver, P. Dobson, D.J. Paul, J. Electron. Mater. 42, 2030 (2013)CrossRefGoogle Scholar
  11. 11.
    M.M. Mirza, H. Zhou, X. Li, P. Velha, K. Docherty, A. Samarelli, G. Ternent, D.J. Paul, J. Vac. Sci. Technol. B 30, 06FF02 (2012)CrossRefGoogle Scholar
  12. 12.
    H.H. Berger, Solid-State Electron. 15(2), 145 (1972)CrossRefGoogle Scholar
  13. 13.
    G. Chen, B. Yang, W.L. Liu, T. Borca Tasciuc, D. Song, D. Achimov, M.S. Dresselhaus, J.L Liu, and K. Wang, Thermoelectrics, 2001. Proceedings ICT 2001, pp. 30–34.Google Scholar
  14. 14.
    R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O’Quinn, Nature 413, 597 (2001)CrossRefGoogle Scholar
  15. 15.
    K. Gallacher, P. Velha, D.J. Paul, I. MacLaren, M. Myranov, D.R. Leadley, Appl. Phys. Lett. 110, 022113 (2012)CrossRefGoogle Scholar
  16. 16.
    L. Ferre Llin, A. Samarelli, S. Cecchi, T. Etzelstorfer, E. Müller Gubler, D. Chrastina, G. Isella, J. Stangl, J.M.R. Weaver, P.S. Dobson, D.J. Paul, Appl. Phys. Lett. 103, 143507 (2013)CrossRefGoogle Scholar
  17. 17.
    J.H. Klootwijk and C.E. Timmering, ICMTS ’04 Proceedings, 2004 pp. 247–252, 22–25.Google Scholar
  18. 18.
    L. Ferre Llin, A. Samarelli, S. Cecchi, T. Etzelstorfer, E. Müller Gubler, D. Chrastina, G. Isella, J. Stangl, J.M.R. Weaver, P.S. Dobson, D.J. Paul, J. Electron. Mat. 42, 2376 (2013)CrossRefGoogle Scholar
  19. 19.
    H. Böttner, Thermoelectrics and Its Energy Harvesting: Modules, Systems, and Applications in Thermoelectrics, ed. D.W. Rowe (CRC Press, Boca Raton, USA, 2012).Google Scholar
  20. 20.
    D.W. Rowe, IEE Proc. 143, 351 (1996)Google Scholar

Copyright information

© TMS 2014

Authors and Affiliations

  • A. Samarelli
    • 1
  • L. Ferre Llin
    • 1
  • S. Cecchi
    • 2
  • D. Chrastina
    • 2
  • G. Isella
    • 2
  • T. Etzelstorfer
    • 3
  • J. Stangl
    • 3
  • E. Muller Gubler
    • 4
  • J. M. R. Weaver
    • 1
  • P. Dobson
    • 1
  • D. J. Paul
    • 1
  1. 1.School of EngineeringUniversity of GlasgowGlasgowUK
  2. 2.L-NESSPolitecnico di MilanoComoItaly
  3. 3.Johannes Kepler UniversitätLinzAustria
  4. 4.ETH ZurichZurichSwitzerland

Personalised recommendations