Journal of Electronic Materials

, Volume 43, Issue 10, pp 3817–3823 | Cite as

Effect of High-Pressure Torsion on Texture, Microstructure, and Raman Spectroscopy: Case Study of Fe- and Te-Substituted CoSb3

  • R. Anbalagan
  • Gerda Rogl
  • Michael Zehetbauer
  • Amit Sharma
  • Peter Rogl
  • Satyam Suwas
  • Ramesh Chandra Mallik


Fe0.05Co0.95Sb2.875Te0.125, a double-element-substituted skutterudite, was prepared by induction melting, annealing, and hot pressing (HP). The hot-pressed sample was subjected to high-pressure torsion (HPT) with 4 GPa pressure at 673 K. X-ray diffraction was performed before and after HPT processing of the sample; the skutterudite phase was observed as a main phase, but an additional impurity phase (CoSb2) was observed in the HPT-processed sample. Surface morphology was determined by high-resolution scanning electron microscopy. In the HP sample, coarse grains with sizes in the range of approximately 100 nm to 300 nm were obtained. They changed to fine grains with a reduction in grain size to 75 nm to 125 nm after HPT due to severe plastic deformation. Crystallographic texture, as measured by x-ray diffraction, indicated strengthening of (112), (102) poles and weakening of the (123) pole of the HPT-processed sample. Raman-active vibrational modes showed a peak position shift towards the lower energy side, indicating softening of the modes after HPT. The distortion of the rectangular Sb–Sb rings leads to broadening of Sb–Sb vibrational modes due to local strain fluctuation. In the HPT process, a significant effect on the shorter Sb–Sb bond was observed as compared with the longer Sb–Sb bond.


Skutterudites high-pressure torsion grain refinement texture Raman spectroscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors would like to thank the Department of Science & Technology (DST), India for financial support (Grant No. supporting this work SR/FTP/PS-07/09). R.C.M. and P.R. are grateful to the OEAD for support via the WTZ Austria–India under Grant IN 09/2011.


  1. 1.
    M. Llunell, S. Alvarez, and P. Alemany, J. Chem. Soc. Dalton Trans. 1, 1195 (1998).CrossRefGoogle Scholar
  2. 2.
    I. Oftedal, Z. Kristallogr. A 66, 517 (1928).Google Scholar
  3. 3.
    J. Yang, Q. Hao, H. Wang, Y.C. Lan, Q.Y. He, A. Minnich, D.Z. Wang, A. Harriman, V.M. Varki, M.S. Dresselhaus, G. Chen, and Z.F. Ren, Phys. Rev. B 80, 115329 (2009).CrossRefGoogle Scholar
  4. 4.
    L. Guo, X. Su, J.R. Salvador, and G.P. Meisner, Appl. Phys. Lett. 102, 111905 (2013).CrossRefGoogle Scholar
  5. 5.
    S. Katsuyama, Y. Shichijo, M. Ito, K. Majima, and H. Nagai, J. Appl. Phys. 84, 6708 (1998).CrossRefGoogle Scholar
  6. 6.
    X. Su, H. Li, G. Wang, H. Chi, X. Zhou, X. Tang, Q. Zhang, and C. Uher, Chem. Mater. 23, 2948 (2011).CrossRefGoogle Scholar
  7. 7.
    R.C. Mallik, R. Anbalagan, G. Rogl, E. Royanian, P. Heinrich, E. Bauer, P. Rogl, and S. Suwas, Acta Mater. 61, 6698 (2013).CrossRefGoogle Scholar
  8. 8.
    H.D. Lutz and G. Kliche, Phys. Status Solidi (b) 112, 549 (1982).CrossRefGoogle Scholar
  9. 9.
    G.S. Nolas and C.A. Kendziora, Phys. Rev. B 59, 6189 (1999).CrossRefGoogle Scholar
  10. 10.
    R.P. Hermann, R. Jin, W. Schwika, F. Grandjean, D. Mandrus, B.C. Sales, and G.J. Long, Phys. Rev. Lett. 90, 1 (2003).CrossRefGoogle Scholar
  11. 11.
    A.P. Zhilyaev and T.G. Langdon, Progr. Mater. Sci. 53, 893 (2008).CrossRefGoogle Scholar
  12. 12.
    G. Rogl, D. Setman, E. Schafler, J. Horky, M. Kerber, M. Zehetbauer, M. Falmbigl, P. Rogl, E. Royanian, and E. Bauer, Acta Mater. 60, 2146 (2012).CrossRefGoogle Scholar
  13. 13.
    G. Rogl, Z. Aabdin, E. Schafler, J. Horky, D. Setman, M. Zehetbauer, M. Kriegisch, A.G.O. Eibl, E. Bauer, M. Reinecker, W. Schranz, and P. Rogl, J. Alloys Compd. 537, 183 (2012).CrossRefGoogle Scholar
  14. 14.
    G. Rogl, P. Rogl, E. Bauer, and M. Zehetbauer, Severe Plastic Deformation, a Tool to Enhance Thermoelectric Performance.Thermoelectric Nanomaterials, ed. K. Kuomoto and T. Mori (New York: Springer, 2013), pp. 193–254.CrossRefGoogle Scholar
  15. 15.
    L.D. Zhao, J. Sui, J. Li, H. Wu, and Y. Pei, Energy Environ. 6, 2916 (2013).CrossRefGoogle Scholar
  16. 16.
    J.J. Shen, L.P. Hu, T.J. Zhu, and X.B. Zhao, Appl. Phys. Lett. 99, 124102 (2011).CrossRefGoogle Scholar
  17. 17.
    J.R. Carvajal, FULLPROF: A Program for Rietveld Refinement and Pattern Matching Analysis,Abstracts of the Satellite Meeting on Powder Diffraction of the XV Congress (International Union of Crystallography, Toulouse, France, 1990), p. 127.Google Scholar
  18. 18.
    V. Mote, Y. Purushotham, and B. Dole, J. Theor. Appl. Phys. 6, 6 (2012).CrossRefGoogle Scholar
  19. 19.
    W.S. Liu, B.p. Zhang, J.F. Li, and L.D. Zhao, J. Phys. D 40, 556 (2007).CrossRefGoogle Scholar
  20. 20.
    J. Feldman, D. Singh, C. Kendziora, D. Mandrus, and B. Sales, Phys. Rev. B 68, 94301 (2003).CrossRefGoogle Scholar
  21. 21.
    G.S. Nolas, C.A. Kendziora, and H. Takizawa, J. Appl. Phys. 94, 7440 (2003).CrossRefGoogle Scholar
  22. 22.
    N. Lazarevi, M.M. Radonji, R. Hu, D. Tanaskovi, C. Petrovic, and Z.V. Popovi, J. Phys. Condens. Matter 24, 135402 (2012).CrossRefGoogle Scholar
  23. 23.
    W.S. Liu, B.P. Zhang, L.D. Zhao, and J. Li, Chem. Mater. 20, 7526 (2008).CrossRefGoogle Scholar
  24. 24.
    R.K. Islamgaliev, R. Kuzel, E.D. Obraztsova, J. Burianek, F. Chmelik, and R.Z. Valiev, Mater. Sci. Eng. A 249, 152 (1998).CrossRefGoogle Scholar
  25. 25.
    W. Cai, J. Mabon, and P. Bellon, Wear 267, 485 (2009).CrossRefGoogle Scholar
  26. 26.
    C. Stiewe, Z. He, D. Platzek, E. Muller, S. Li, M. Toprak, and M. Muhammed, 25th International Conference on Thermoelectrics, ICT’06 (2006), pp. 678–680.Google Scholar
  27. 27.
    W.S. Liu, B.P. Zhang, J.F. Li, H.L. Zhang, and L.D. Zhao, J. Appl. Phys. 102, 103717 (2007).CrossRefGoogle Scholar

Copyright information

© TMS 2014

Authors and Affiliations

  • R. Anbalagan
    • 1
  • Gerda Rogl
    • 2
  • Michael Zehetbauer
    • 3
  • Amit Sharma
    • 4
  • Peter Rogl
    • 2
  • Satyam Suwas
    • 4
  • Ramesh Chandra Mallik
    • 1
  1. 1.Thermoelectric Materials and Devices Laboratory, Department of PhysicsIndian Institute of ScienceBangaloreIndia
  2. 2.Institute of Physical ChemistryUniversity of ViennaViennaAustria
  3. 3.Physics of Nanostructured Materials, Department of PhysicsUniversity of ViennaViennaAustria
  4. 4.Department of Materials EngineeringIndian Institute of ScienceBangaloreIndia

Personalised recommendations