Journal of Electronic Materials

, Volume 43, Issue 10, pp 3780–3784 | Cite as

Effect of Nonlinearity of the Phonon Spectrum on the Thermal Conductivity of Nanostructured Materials Based on Bi–Sb–Te

  • L. P. Bulat
  • V. B. Osvenskii
  • D. A. Pshenay-Severin


A theoretical investigation of the lattice thermal conductivity of nanostructured materials based on Bi–Sb–Te is presented. The calculations were based on relaxation time approximation and took into account both the real phonon spectra, obtained from first-principles by use of density functional theory, and the anisotropy of phonon relaxation time. Phonon relaxation time data were determined from experimental values of the lattice thermal conductivity. The decrease of the thermal conductivity caused by the nanostructure was compared with results from calculations based on the linear Debye approach. Estimation showed that phonon boundary scattering can lead to a 55% decrease of thermal conductivity for a grain size of ~20 nm in the Debye approximation. Taking the nonlinearity of the acoustic phonon spectrum into account leads to a 20% larger decrease of the thermal conductivity because of boundary scattering. The reason is that consideration of the real phonon spectrum increases the relative contribution to thermal conductivity of acoustic phonons with low frequencies that are scattered more strongly at nanograin boundaries. Similarly, estimation of lattice thermal conductivity reduction as a result of phonon scattering by nanoinclusions gave an 8% larger decrease when the real phonon spectrum was used rather than the linear Debye approximation. For such a substantial decrease of lattice thermal conductivity, the effect of the optical phonons was estimated; it was shown that optical phonons can reduce the change of thermal conductivity as a result of grain boundary scattering by no more than 10%. Finally, the minimum lattice thermal conductivity was estimated to be 0.07 W/m K because of acoustic modes (0.09 W/m K in the Debye approach) and 0.14 W/m K when the contribution of optical modes was also taken into consideration.


Thermoelectrics bulk nanostructures thermoelectric figure of merit bismuth telluride thermal conductivity nonlinearity of the phonon spectrum real phonon spectrum boundary scattering 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M.S. Dresselhaus, G. Chen, and Zh Ren, Science 320, 634 (2008).CrossRefGoogle Scholar
  2. 2.
    W. Xie, X. Tang, Y. Yan, Q. Zhang, and T.M. Tritt, Appl. Phys. Lett. 94, 102111 (2009).CrossRefGoogle Scholar
  3. 3.
    J. Androulakis, C.-H. Lin, H.-J. Kong, C. Uher, C.-I. Wu, T. Hogan, B.A. Cook, T. Caillat, K.M. Paraskevopoulos, and M.G.J. Kanatzidis, Am. Chem. Soc. 129, 9780 (2007).CrossRefGoogle Scholar
  4. 4.
    L.P. Bulat, V.B. Osvenskii, YuN Parkhomenko, and D.A. Pshenay-Severin, J. Solid State Chem. 193, 122 (2012).CrossRefGoogle Scholar
  5. 5.
    A. Pattamatta and C. Madnia, Int. J. Heat Mass Transf. 52, 860 (2009).CrossRefGoogle Scholar
  6. 6.
    B.-L. Huang and M. Kaviany, Phys. Rev. B 77, 125209 (2008).CrossRefGoogle Scholar
  7. 7.
    G.C. Sosso, S. Caravati, and M. Bernasconi, J. Phys. Condens. Matter 21, 095410 (2009).CrossRefGoogle Scholar
  8. 8.
    N.A. Katcho, N. Mingo, and D.A. Broido, Phys. Rev. B 85, 115208 (2012).CrossRefGoogle Scholar
  9. 9.
    P. Giannozzi, S. Baroni, and N. Bonini et al., J. Phys. Condens. Matter 21, 395502 (2009). Accessed 04 October 2013.
  10. 10.
    S. Baroni, P. Giannozzi, and A. Testa, Phys. Rev. Lett. 58, 1861 (1987).CrossRefGoogle Scholar
  11. 11.
    S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi, Rev. Mod. Phys. 73, 515 (2001).CrossRefGoogle Scholar
  12. 12.
    X. Gonze, Phys. Rev. A 52, 1096 (1995).CrossRefGoogle Scholar
  13. 13.
    ThL Anderson and H.B. Krause, Acta Crystallogr. B 30, 1307 (1974).CrossRefGoogle Scholar
  14. 14.
    P. Grosse, H. Burkhard, V. Wagner, and B. Dorner, ILL-experimental report 04-01-044, Grenoble (1976).Google Scholar
  15. 15.
    S. Grimme, J. Comp. Chem. 27, 1787 (2006).CrossRefGoogle Scholar
  16. 16.
    V. Barone, M. Casarin, D. Forrer, M. Pavone, M. Sambi, and A. Vittadini, J. Comp. Chem. 30, 934 (2009).CrossRefGoogle Scholar
  17. 17.
    B. M. Mogilevskii and A. F. Chudnovskii, Thermal Conductivity of Semiconductors [in Russian], Moscow (1972), 536 p.Google Scholar
  18. 18.
    G. Lehmann and M. Taut, Phys. Status Solidi (b) 54, 469 (1972).CrossRefGoogle Scholar
  19. 19.
    B.M. Goltsman, B.A. Kudinov, and I.A. Smirnov, Semiconductor Thermoelectric Materials Based on Bi 2 Te 3 (Moskow: Nauka, 1972), p. 320.Google Scholar
  20. 20.
    K. Stecker, H. Süssmann, W. Eichler, W. Heiliger, and M. Stordeur, Wiss. Z. Martin-Luther-Univ. Halle/Wittenberg, Math-Naturwiss. R27, 5 (1978).Google Scholar
  21. 21.
    L.P. Bulat, I.A. Drabkin, V.V. Karataev, V.B. Osvenskii, and D.A. Pshenay-Severin, Phys. Solid State 52, 1836 (2010).CrossRefGoogle Scholar
  22. 22.
    W. Kim and A. Majumdar, J. Appl. Phys. 99, 084306 (2006).CrossRefGoogle Scholar
  23. 23.
    D.G. Cahill and R.O. Pohl, Annu. Rev. Phys. Chem. 39, 93 (1988).CrossRefGoogle Scholar

Copyright information

© TMS 2014

Authors and Affiliations

  • L. P. Bulat
    • 1
  • V. B. Osvenskii
    • 2
  • D. A. Pshenay-Severin
    • 3
    • 4
  1. 1.National Research University of Information Technologies, Mechanics and Optics (ITMO)Saint PetersburgRussian Federation
  2. 2.Giredmet Ltd.MoscowRussian Federation
  3. 3.Ioffe Physical Technical Institute, Russian Academy of SciencesSaint PetersburgRussian Federation
  4. 4.St. Petersburg State Polytechnical UniversitySaint PetersburgRussian Federation

Personalised recommendations