Journal of Electronic Materials

, Volume 43, Issue 8, pp 2963–2969 | Cite as

Mid-Wavelength Infrared nBn for HOT Detectors

  • A. Rogalski
  • P. Martyniuk
Open Access


Recently, new strategies to achieve high-operating-temperature (HOT) detectors have been proposed, including barrier structures such as nBn devices, unipolar barrier photodiodes, alternative materials such as superlattices, and multistage (cascade) infrared devices. In the case of nBn detectors, the barriers must be correctly engineered and correctly located in the device structure to achieve optimal performance. This paper presents the limitations of barrier unipolar devices and the progress in their development for HOT operation in the mid-wavelength infrared range. Their performance is compared with state-of-the-art HgCdTe photodiodes.


Unipolar barrier detectors nBn detectors InAsSb ternary alloy InAs/GaSb type II superlattices HgCdTe photodetectors 



This paper has been completed under the financial support of the Polish National Science Centre (Project UMO-2012/07/D/ST7/02564).


  1. 1.
    J. Piotrowski and A. Rogalski, Infrared Phys. Technol. 46, 115 (2004).CrossRefGoogle Scholar
  2. 2.
    J. Piotrowski and A. Rogalski, High-Operating Temperature Infrared Photodetectors (Bellingham: SPIE Press, 2007).CrossRefGoogle Scholar
  3. 3.
    G.J. Brown, Proc. SPIE 5783 (2005).Google Scholar
  4. 4.
    P. Martyniuk and A. Rogalski, Opto-Electron. Rev. 21, 239 (2013).CrossRefGoogle Scholar
  5. 5.
    S. Maimon and G. Wicks, Appl. Phys. Lett. 89, 151109-1 (2006).CrossRefGoogle Scholar
  6. 6.
    A. White, U.S. Patent No. 4,679,063, 22 September 1983.Google Scholar
  7. 7.
    G.R. Savich, J.R. Pedrazzani, D.E. Sidor, S. Maimon, and G.W. Wicks, Proc. SPIE 8012, 8022T (2012).Google Scholar
  8. 8.
    A. Khoshakhlagh, S. Myers, E. Plis, M.N. Kutty, B. Klein, N. Gautam, H. Kim, E.P.G. Smith, D. Rhiger, S.M. Johnson, and S. Krishna, Proc. SPIE 7660, 76602Z (2010).CrossRefGoogle Scholar
  9. 9.
    E. Weiss, O. Klin, S. Grossmann, N. Snapi, I. Lukomsky, D. Aronov, M. Yassen, E. Berkowicz, A. Glozman, P. Klipstein, A. Freankel, and I. Shtrichman, J. Cryst. Growth 339, 31 (2012).CrossRefGoogle Scholar
  10. 10.
    D.Z.-Y. Ting, A. Soibel, L. Höglund, J. Nguyen, C.J. Hill, A. Khoshakhlagh, and S.D. Gunapala, Semiconductors and Semimetals, Vol. 84, ed. S.D. Gunapala, D.R. Rhiger, and C. Jagadish (Amsterdam: Elsevier, 2011), pp. 1–57.Google Scholar
  11. 11.
    A.M. Itsuno, J.D. Philips, and S. Velicu, J. Electron. Mater. 40, 1624 (2011).CrossRefGoogle Scholar
  12. 12.
    M. Kopytko and K. Jóźwikowski, J. Electron. Mater. 42, 3221 (2013).CrossRefGoogle Scholar
  13. 13.
    G.R. Savich, J.R. Pedrazzani, D.E. Sidor, and G.W. Wicks, Infrared Phys. Technol. 59, 152 (2013).CrossRefGoogle Scholar
  14. 14.
    P. Klipstein, Proc. SPIE. 6940, 69402U-1 (2008).Google Scholar
  15. 15.
    D.Z. Ting, C.J. Hill, A. Soibel, J. Nguyen, S.A. Keo, M.C. Lee, J.M. Mumolo, J.K. Liu, and S.D. Gunapala, Proc. SPIE 7660, 76601R-1 (2010).Google Scholar
  16. 16.
    P. Klipstein, O. Klin, S. Grossman, N. Snapi, I. Lukomsky, D. Aronov, M. Yassen, A. Glozman, T. Fishman, E. Berkowicz, O. Magen, I. Shtrichman, and E. Weiss, Opt. Eng. 50, 061002-1 (2011).Google Scholar
  17. 17.
    M. Reine, J. Schuster, B. Pinkie, and E. Bellotti, J. Electron. Mater. 42, 3015 (2013).CrossRefGoogle Scholar
  18. 18.
    J.B. Rodriguez, E. Plis, G. Bishop, Y.D. Sharma, H. Kim, L.R. Dawson, and S. Krishna, Appl. Phys. Lett. 91, 043514-1 (2007).Google Scholar
  19. 19.
    B.-M. Nguyen, S. Bogdanov, S.A. Pour, and M. Razeghi, Appl. Phys. Lett. 95, 183502-1 (2009).Google Scholar
  20. 20.
    A.D. Hood, A.J. Evans, A. Ikhlassi, D.L. Lee, and W.E. Tennant, J. Electron. Mater. 39, 1001 (2010).CrossRefGoogle Scholar
  21. 21.
    D.Z.-Y. Ting, C.J. Hill, A. Soibel, S.A. Keo, J.M. Mumolo, J. Nguyen, and S.D. Gunapala, Appl. Phys. Lett. 95, 023508-1 (2009).CrossRefGoogle Scholar
  22. 22.
    J.F. Klem, J.K. Kim, M.J. Cich, S.D. Hawkins, T.R. Fortune, and J.L. Rienstra, Proc. SPIE 7608, 76081P (2010).CrossRefGoogle Scholar
  23. 23.
    H. Kroemer, Phys. E 20, 196 (2004).CrossRefGoogle Scholar
  24. 24.
    H. Sakaki, L.L. Chang, R. Ludeke, C.A. Chang, G.A. Sai-Halasz, and L. Esaki, Appl. Phys. Lett. 31, 211 (1977).CrossRefGoogle Scholar
  25. 25.
    F. Kelm, S.D. Hawkins, J.K. Kim, D. Leonhardt, and E.A. Shaner, J. Vac. Sci. Technol. B31, 03C115-1 (2013).Google Scholar
  26. 26.
    D. Donetsky, G. Belenky, S. Svensson, and S. Suchalki, Appl. Phys. Lett. 97, 052108 (2010).CrossRefGoogle Scholar
  27. 27.
    S. Myers, E. Plis, C. Morath, V. Cowan, N. Gautam, B. Klein, M.N. Kutty, M. Naydenkov, T. Schuler-Sandya, and S. Krishna, Proc. SPIE 8155, 815507-1 (2011).Google Scholar
  28. 28.
    S. Velicu, J. Zhao, M. Morley, A.M. Itsuno, and J.D. Philips, Proc. SPIE 8268, 82682X (2012).CrossRefGoogle Scholar
  29. 29.
    A.M. Itsuno, J.D. Philips, and S. Velicu, Appl. Phys. Lett. 100, 161102 (2012).CrossRefGoogle Scholar
  30. 30.
    G.A. Hurkx, D.B.M. Klaassen, and M.P.G. Knuvers, IEEE Trans. Electron Devices 39, 2 (1992).Google Scholar
  31. 31.
    APSYS Macro/User’s Manual ver. 2011, Crosslight Software, Inc., 2011.Google Scholar
  32. 32.
    I. Vurgaftman, J.R. Meyer, and L.R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001).CrossRefGoogle Scholar
  33. 33.
  34. 34.
    P.P. Capper, Properties of Narrow Gap Cadmium-Based Compounds (London: The Institution of Electrical Engineers, 1994).Google Scholar
  35. 35.
    B. Klein, E. Plis, M.N. Kutty, N. Gautam, A. Albrecht, S. Myers, and S. Krishna, J. Phys. D Appl. Phys. 44, 075102 (2011).CrossRefGoogle Scholar
  36. 36.
    J. Wróbel, P. Martyniuk, E. Plis, P. Madejczyk, W. Gawron, S. Krishna, and A. Rogalski, Proc. SPIE 8353, 8353-16 (2012).CrossRefGoogle Scholar
  37. 37.
  38. 38.
    P. Martyniuk and A. Rogalski, Proc. SPIE 8704, 87041X (2013).CrossRefGoogle Scholar
  39. 39.
    P. Martyniuk and A. Rogalski, Solid-State Electron. 80, 96 (2013).CrossRefGoogle Scholar
  40. 40.
    E.F. Schubert, L.W. Tu, G.J. Zydzik, R.F. Kopf, A. Benvenuti, and M.R. Pinto, Appl. Phys. Lett. 60, 466 (1992).CrossRefGoogle Scholar
  41. 41.
    S.D. Gunpala, D.Z. Ting, C.J. Hill, and S.V. Bandara, U.S. Patent No. 7,737,411, 2010.Google Scholar
  42. 42.
    N.D. Akhavan, G. Jolley, G. Umana-Membreno, J. Antoszewski, and L. Faraone, Extended Abstracts, The 2013 Workshop on the Physics and Chemistry of II–VI Materials, Chicago (2013).Google Scholar

Copyright information

© The Author(s) 2014

Open AccessThis article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Authors and Affiliations

  1. 1.Institute of Applied PhysicsMilitary University of TechnologyWarsawPoland

Personalised recommendations