Journal of Electronic Materials

, Volume 43, Issue 10, pp 3740–3745 | Cite as

Thermoelectric Properties of Tetrathiotetracene Iodide Crystals: Modeling and Experiment

  • Anatolie Casian
  • Ionel Sanduleac


A more complete physical model for nanostructured crystals of tetrathiotetracene-iodide that takes into account the interaction of carriers with the neighboring one-dimensional (1D) conductive chains and also the scattering on impurities and defects is presented. For simplicity, the 2D approximation is applied. It is shown that this model describes very well the temperature dependencies of electrical conductivity in the temperature interval between 180 and 300 K, and of the Seebeck coefficient between 50 and 300 K, the highest temperature for which the measurements were reported. For lower temperatures, it is necessary to also consider the fluctuations of dielectric phase that appear before the metal–dielectric transition. It is found that the predictions made in the 1D approximation are valid only if the crystal purity is not very high, and the electrical conductivity is limited up to \({\sim }3.5\times 10^{6}\,\Omega ^{-1}\,\hbox {m}^{-1}\) and the thermoelectric figure of merit up to \(ZT\sim 4\).


Thermoelectric organic crystal tetrathiotetracene-iodide Seebeck coefficient thermal conductivity thermoelectric figure of merit 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    O. Bubnova et al., Nat. Mater. 10, 429 (2011).CrossRefGoogle Scholar
  2. 2.
    R. Yue, Synth. Met. 162, 912 (2012).CrossRefGoogle Scholar
  3. 3.
    H.L. Kwok, JEM 41, 476 (2012).CrossRefGoogle Scholar
  4. 4.
    G.-H. Kim, L. Shao, K. Zhang, K.P. Pipe, Nat. Matter. 12, 719 (2013).CrossRefGoogle Scholar
  5. 5.
    Y. Sun, P. Sheng, C. Di, F. Jiao, W. Xu, and D. Zhu, Adv. Mater. (2012). doi: 10.1002/adma.201104305.
  6. 6.
    T.O. Poehler, H.E. Katz, Energy Environ. Sci. 5, 8110 (2012). doi: 10.1039/C2EE22124A.CrossRefGoogle Scholar
  7. 7.
    K. Hayashi, T. Shinano, Y. Miyazaki, T. Kajitani, J. Appl. Phys. 109, 023712 (2011).CrossRefGoogle Scholar
  8. 8.
    Y.Y. Wang, K.F. Cai, J.L. Yin, B.J. An, Y. Du, X. Yao, J. Nanopart. Res. 13, 533 (2011).CrossRefGoogle Scholar
  9. 9.
    W.Q. Ao, L. Wang, J.Q. Li, F. Pan, C.N. Wu, JEM 40, 2027 (2011).CrossRefGoogle Scholar
  10. 10.
    J. Yang, H.-L. Yip, A.K.-Y. Jen, Adv. Energy Mater. 3, 549 (2013).CrossRefGoogle Scholar
  11. 11.
    Shane P. Ashby, Jorge Garcia-Canadas, Gao Min, Yimin Chao, JEM 42, 1495 (2013).CrossRefGoogle Scholar
  12. 12.
    G. Kim, K.P. Pipe, Phys. Rev. B 86, 085208 (2012).CrossRefGoogle Scholar
  13. 13.
    J. Chen, D. Wang, Z. Shuai, J. Chem. Theory Comput. 8, 3338 (2012). doi: 10.1021/ct3004436.CrossRefGoogle Scholar
  14. 14.
    Zheyong Fan, Hui-Qiong Wang, Jin-Cheng Zheng, J. Appl. Phys. 109, 073713 (2011).CrossRefGoogle Scholar
  15. 15.
    D. Wang, L. Tang, M. Long, Z. Shuai, J. Phys. Chem. C 115, 5940 (2011). doi: 10.1021/jp108739c.CrossRefGoogle Scholar
  16. 16.
    Y. Wang, J. Zhou, R. Yang, J. Phys. Chem. C 115, 24418 (2011).CrossRefGoogle Scholar
  17. 17.
    A. Casian, in: Thermoelectric Handbook, Macro to Nano, Chap. 36, ed. D.M. Rowe (Boca Raton, FL: CRC Press, 2006).Google Scholar
  18. 18.
    A. Casian, J.G. Stockholm, V. Dusciac, V. Nicic, J. Nanoelectron. Optoelectron. 4, 95 (2009).CrossRefGoogle Scholar
  19. 19.
    A. Casian, V. Dusciac, Iu Coropceanu, Phys. Rev. B 66, 165404 (2002).CrossRefGoogle Scholar
  20. 20.
    A. Casian, I. Sanduleac, J. Nanoelectron. Optoelectron. 7, 706 (2012).CrossRefGoogle Scholar
  21. 21.
    V.F. Kaminskii, M.L. Khidekel’, R.B. Lyubovskii et al., Phys. Status Solidi A 44, 77 (1977).CrossRefGoogle Scholar
  22. 22.
    R.P. McVall, D.B. Tanner, L.S. Miller, A.J. Epstein, Bull. Am. Phys. Soc. 28, 445 (1983).Google Scholar
  23. 23.
    K. Mortensen, J.M. Fabre, E.M. Conwell, Phys. Rev. B 28, 5856 (1983).CrossRefGoogle Scholar
  24. 24.
    V.J. Emery, R. Bruinsma, S. Barisic, Phys. Rev. Lett. 48, 1039 (1982).CrossRefGoogle Scholar
  25. 25.
    P.M. Chaikin, G. Gruner, I.F. Shchegolev, E.B. Yagubskii, Solid State Commun. 32, 1211 (1979).CrossRefGoogle Scholar

Copyright information

© TMS 2014

Authors and Affiliations

  1. 1.Technical University of MoldovaChisinauRep. of Moldova

Personalised recommendations