Journal of Electronic Materials

, Volume 43, Issue 8, pp 2802–2807 | Cite as

Antimonide-Based Type II Superlattices: A Superior Candidate for the Third Generation of Infrared Imaging Systems

  • M. Razeghi
  • A. Haddadi
  • A. M. Hoang
  • G. Chen
  • S. Bogdanov
  • S. R. Darvish
  • F. Callewaert
  • P. R. Bijjam
  • R. McClintock
Article

Abstract

Type II superlattices (T2SLs), a system of interacting multiquantum wells, were introduced by Nobel Laureate L. Esaki in the 1970s. Since then, this material system has drawn a lot of attention, especially for infrared detection and imaging. In recent years, the T2SL material system has experienced incredible improvements in material growth quality, device structure design, and device fabrication techniques that have elevated the performance of T2SL-based photodetectors and focal-plane arrays (FPAs) to a level comparable to state-of-the-art material systems for infrared detection and imaging, such as mercury cadmium telluride compounds. We present the current status of T2SL-based photodetectors and FPAs for imaging in different infrared regimes, from short wavelength to very long wavelength, and dual-band infrared detection and imaging, as well as the future outlook for this material system.

Keywords

Infrared imaging InAs/GaSb/AlSb type II superlattices infrared photodetectors high operating temperature dual-band focal-plane arrays 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G.A. Sai-Halasz, R. Tsu, and L. Esaki, Appl. Phys. Lett. 30, 651 (1977).CrossRefGoogle Scholar
  2. 2.
    M. Razeghi, U.S. Patent 6864552 (2005).Google Scholar
  3. 3.
    H. Mohseni, V.I. Litvinov, and M. Razeghi, Phys. Rev. B 58, 15378 (1998).CrossRefGoogle Scholar
  4. 4.
    B. M. Nguyen, M. Razeghi, V. Nathan, and Gail J, Brown (Presented at the Quantum Sensing and Nanophotonic Devices IV, San Jose, CA, USA, 2007) (unpublished).Google Scholar
  5. 5.
    A.M. Hoang, G. Chen, A. Haddadi, S.A. Pour, and M. Razeghi, Appl. Phys. Lett. 100, 211101 (2012).CrossRefGoogle Scholar
  6. 6.
    S.A. Pour, E.K. Huang, G. Chen, A. Haddadi, B.-M. Nguyen, and M. Razeghi, Appl. Phys. Lett. 98, 143501 (2011).CrossRefGoogle Scholar
  7. 7.
    G. Chen, B.M. Nguyen, A.M. Hoang, E.K. Huang, S.R. Darvish, and M. Razeghi, Appl. Phys. Lett. 99, 183503 (2011).CrossRefGoogle Scholar
  8. 8.
    G. Chen, E.K. Huang, A.M. Hoang, S. Bogdanov, S.R. Darvish, and M. Razeghi, Appl. Phys. Lett. 101, 213501 (2012).CrossRefGoogle Scholar
  9. 9.
    P. Manurkar, S. Ramezani-Darvish, B.-M. Nguyen, M. Razeghi, and J. Hubbs, Appl. Phys. Lett. 97, 193505 (2010).CrossRefGoogle Scholar
  10. 10.
    A. Haddadi, S. Ramezani-Darvish, C. Guanxi, H. Anh Minh, N. Binh-Minh, and M. Razeghi, IEEE J. Quantum Elect. 48, 221 (2012).CrossRefGoogle Scholar
  11. 11.
    A. Haddadi, S.R. Darvish, G. Chen, A.M. Hoang, B.-M. Nguyen, and M. Razeghi, AIP Conf. Proc. 1416, 56 (2011).CrossRefGoogle Scholar
  12. 12.
    E.K. Huang, A. Haddadi, G. Chen, B.-M. Nguyen, M.-A. Hoang, R. McClintock, M. Stegall, and M. Razeghi, Opt. Lett. 36, 2560 (2011).CrossRefGoogle Scholar
  13. 13.
    E.K. Huang and M. Razeghi, SPIE Conference Proceedings 82680Z (2012).Google Scholar
  14. 14.
    E.K. Huang, M.-A. Hoang, G. Chen, S. Ramezani-Darvish, A. Haddadi, and M. Razeghi, Opt. Lett. 37, 4744 (2012).CrossRefGoogle Scholar
  15. 15.
    E.K. Huang, A. Haddadi, G. Chen, A.-M. Hoang, and M. Razeghi, Opt. Lett. 38, 22 (2013).CrossRefGoogle Scholar

Copyright information

© TMS 2014

Authors and Affiliations

  • M. Razeghi
    • 1
  • A. Haddadi
    • 1
  • A. M. Hoang
    • 1
  • G. Chen
    • 1
  • S. Bogdanov
    • 1
  • S. R. Darvish
    • 1
  • F. Callewaert
    • 1
  • P. R. Bijjam
    • 1
  • R. McClintock
    • 1
  1. 1.Electrical Engineering and Computer Science Department, Center for Quantum DevicesNorthwestern UniversityEvanstonUSA

Personalised recommendations