Journal of Electronic Materials

, Volume 43, Issue 4, pp 902–908 | Cite as

GaSb Thermophotovoltaic Cells Grown on GaAs Substrate Using the Interfacial Misfit Array Method

  • Dante DeMeo
  • Corey Shemelya
  • Chandler Downs
  • Abigail Licht
  • Emir Salih Magden
  • Tom Rotter
  • Chetan Dhital
  • Stephen Wilson
  • Ganesh Balakrishnan
  • Thomas E. Vandervelde
Article

Abstract

We present gallium antimonide (GaSb) p–i–n photodiodes for use as thermophotovoltaic (TPV) cells grown on gallium arsenide (100) substrates using the interfacial misfit array method. Devices were grown using molecular beam epitaxy and fabricated using standard microfabrication processes. X-ray diffraction was used to measure the strain, and current–voltage (IV) tests were performed to determine the photovoltaic properties of the TPV cells. Energy generation at low efficiencies was achieved, and device performance was critically analyzed.

Keywords

Thermophotovoltaic interfacial misfit array lattice mismatch gallium antimonide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This material is based upon work supported by␣the National Science Foundation Graduate Research Fellowship under Grant No. DGE-0806676 and NSF Grant No. ECCS-1055203. This work was performed in part at the Center for Nanoscale Systems (CNS), a member of the National Nanotechnology Infrastructure Network (NNIN), which is supported by the National Science Foundation under NSF Award No. ECS-0335765. CNS is part of Harvard University. The Tufts Micro- and Nanofabrication Facility was also used for this work.

References

  1. 1.
    D.F. DeMeo and T.E. Vandervelde, MRS Proc. 1329 (2011).Google Scholar
  2. 2.
    C. Shemelya and T.E. Vandervelde, J. Electron. Mater. 41, 928 (2012).CrossRefGoogle Scholar
  3. 3.
    C.M. Shemelya and T.E. Vandervelde, MRS Proc. 1208, 1208 (2011).Google Scholar
  4. 4.
    D.F. DeMeo and T.E. Vandervelde, J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 29, 031401 (2011).CrossRefGoogle Scholar
  5. 5.
    D.L. Chubb, Fundamentals of Thermophotovoltaic Energy Conversion (Amsterdam: Elsevier, 2007), p. 515.Google Scholar
  6. 6.
    Y.B. Bolkhovityanov and O.P. Pchelyakov, Phys. Usp. 51, 437 (2008).CrossRefGoogle Scholar
  7. 7.
    S.H. Huang, G. Balakrishnan, A. Khoshakhlagh, A. Jallipalli, L.R. Dawson, and D.L. Huffaker, Appl. Phys. Lett. 88, 131911 (2006).CrossRefGoogle Scholar
  8. 8.
    A. Jallipalli, G. Balakrishnan, S.H.H. Huang, A. Khoshakhlagh, L.R.R. Dawson, and D.L.L. Huffaker, J. Cryst. Growth 303, 449 (2007).CrossRefGoogle Scholar
  9. 9.
    M. Mehta, G. Balakrishnan, S. Huang, A. Khoshakhlagh, A. Jallipalli, P. Patel, M.N. Kutty, L.R. Dawson, and D.L. Huffaker, Appl. Phys. Lett. 89, 211110 (2006).CrossRefGoogle Scholar
  10. 10.
    S. Huang, G. Balakrishnan, and D.L. Huffaker, J. Appl. Phys. 105, 103104 (2009).CrossRefGoogle Scholar
  11. 11.
    C. Downs and T.E. Vandervelde, Sensors (Basel) 13, 5054 (2013).CrossRefGoogle Scholar
  12. 12.
    T.E. Vandervelde and S. Krishna, J. Nanosci. Nanotechnol. 10, 1450 (2010).CrossRefGoogle Scholar
  13. 13.
    A. Barve, J. Shao, Y.D. Sharma, T.E. Vandervelde, K. Sankalp, S.J. Lee, S.K. Noh, and S. Krishna, IEEE J.␣Quantum Electron. 46, 1105 (2010).CrossRefGoogle Scholar
  14. 14.
    J.R. Andrews, S.R. Restaino, S.W. Teare, Y.D. Sharma, W.-Y. Jang, T.E. Vandervelde, J.S. Brown, A. Reisinger, M. Sundaram, S. Krishna, and L. Lester, IEEE Trans. Electron Devices 58, 2022 (2011).CrossRefGoogle Scholar
  15. 15.
    R.V. Shenoi, J. Rosenberg, T.E. Vandervelde, O.J. Painte, and S. Krishna, IEEE J. Quantum Electron. 46, 1051 (2010).CrossRefGoogle Scholar
  16. 16.
    J. Rosenberg, R.V. Shenoi, T.E. Vandervelde, S. Krishna, and O. Painter, Appl. Phys. Lett. 95, 161101 (2009).CrossRefGoogle Scholar
  17. 17.
    J. Shao, T.E. Vandervelde, W.-Y. Jang, A. Stintz, and S. Krishna, 2008 8th IEEE Conference on Nanotechnology (IEEE, 2008), pp. 112–115.Google Scholar
  18. 18.
    P. Vines, C.H. Tan, J.P.R. David, R.S. Attaluri, T.E. Vandervelde, S. Krishna, W.-Y. Jang, and M.M. Hayat, IEEE J. Quantum Electron. 47, 190 (2011).CrossRefGoogle Scholar
  19. 19.
    P. Vines, C.H. Tan, J.P.R. David, R.S. Attaluri, T.E. Vandervelde, and S. Krishna, SPIE Eur. Secur. Def., ed D.A. Huckridge and R.R. Ebert (Bellingham, WA: International Society for Optics and Photonics, 2008), pp. 71130J–71130J-7.Google Scholar
  20. 20.
    S. Adachi, P. Capper, and S. Kasap, Properties of Semiconductor Alloys: Group-IV, III–V and II–VI Semiconductors (New York: Wiley, 2009).CrossRefGoogle Scholar
  21. 21.
    S. Huang, G. Balakrishnan, and D. Huffaker, Microsc. Microanal. 15, 1062 (2009).CrossRefGoogle Scholar
  22. 22.
    A. Jallipalli, G. Balakrishnan, S. Huang, T. Rotter, K. Nunna, B. Liang, L. Dawson, and D. Huffaker, Nanoscale Res. Lett. 4, 1458 (2009).CrossRefGoogle Scholar
  23. 23.
    C.J. Reyner, J. Wang, K. Nunna, A. Lin, B. Liang, M.S. Goorsky, and D.L. Huffaker, Appl. Phys. Lett. 99, 231906 (2011).CrossRefGoogle Scholar
  24. 24.
    K.C. Nunna, S.L. Tan, C.J. Reyner, A.R.J. Marshall, B. Liang, A. Jallipalli, J.P.R. David, and D.L. Huffaker, IEEE Photonics Technol. Lett. 24, 218 (2012).CrossRefGoogle Scholar
  25. 25.
    A. Jallipalli, M.N. Kutty, G. Balakrishnan, J. Tatebayashi, N. Nuntawong, S.H. Huang, L.R. Dawson, D.L. Huffaker, Z. Mi, and P. Bhattacharya, Electron. Lett. 43, 1198 (2007).CrossRefGoogle Scholar
  26. 26.
    F.Y. Soldatenkov, S.V. Sorokina, N.K. Timoshina, V.P. Khvostikov, Y.M. Zadiranov, M.G. Rastegaeva, and A.A. Usikova, Semiconductors 45, 1219 (2011).CrossRefGoogle Scholar
  27. 27.
    W.C. Riordan, R. Miller, J.M. Sherman, and J. Hicks, 1999 IEEE International Reliability Physics Symposium Proceedings. 37th Annual. (Cat. No. 99CH36296) (IEEE, 1999), pp. 1–11.Google Scholar
  28. 28.
    P.S. Dutta, H.L. Bhat, and V. Kumar, J. Appl. Phys. 81, 5821 (1997).CrossRefGoogle Scholar

Copyright information

© TMS 2014

Authors and Affiliations

  • Dante DeMeo
    • 1
  • Corey Shemelya
    • 1
  • Chandler Downs
    • 1
  • Abigail Licht
    • 1
  • Emir Salih Magden
    • 1
  • Tom Rotter
    • 2
  • Chetan Dhital
    • 3
  • Stephen Wilson
    • 3
  • Ganesh Balakrishnan
    • 2
  • Thomas E. Vandervelde
    • 1
  1. 1.Renewable Energy and Applied Photonics Labs, ECE DepartmentTufts UniversityMedfordUSA
  2. 2.Center for High Tech MaterialsUniversity of New MexicoAlbuquerqueUSA
  3. 3.Department of PhysicsBoston CollegeChestnut HillUSA

Personalised recommendations