Journal of Electronic Materials

, Volume 43, Issue 6, pp 2121–2126 | Cite as

The Influence of Anisotropy and Nanoparticle Size Distribution on the Lattice Thermal Conductivity and the Thermoelectric Figure of Merit of Nanostructured (Bi,Sb)2Te3

  • L. P. Bulat
  • I. A. Drabkin
  • V. V. Karatayev
  • V. B. Osvenskii
  • Yu. N. Parkhomenko
  • D. A. Pshenay-Severin
  • A. I. Sorokin

Two factors that are important for proper estimation of the thermoelectric figure of merit of bulk nanostructured materials based on bismuth telluride and its solid solutions have been investigated. First, the anisotropy of the thermoelectric properties of nanostructured (Bi,Sb)2Te3 fabricated by the spark plasma sintering (SPS) method was studied experimentally as a function of sintering temperature and pressure. Two measuring methods were used: (a) the Harman method and (b) separate measurements of electrical conductivity, Seebeck coefficient, and thermal conductivity (laser flash method). Anisotropy and transport property values obtained by these methods are compared. Secondly, the influence of the nanoparticle size distribution on the lattice thermal conductivity was taken into account theoretically for scattering of phonons both on nanoprecipitates with different compositions and orientations and on grain boundaries. The results of estimations based on different theoretical approaches (relaxation-time approximation, Monte Carlo simulations, and effective medium method) are compared using typical size distribution parameters from available experimental data.


Thermoelectrics bulk nanostructures thermoelectric figure of merit bismuth telluride direct energy conversion thermoelectric refrigeration thermal conductivity thermoelectric power electrical conductivity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.S. Dresselhaus, G. Chen, M.Y. Tang, R. Yang, H. Lee, D. Wang, Z. Ren, J.-P. Fleurial, and P. Gogna, Adv. Mater. 19, 1043 (2007).CrossRefGoogle Scholar
  2. 2.
    A.J. Minnich, M.S. Dresselhaus, Z.F. Ren, and G. Chen, Energy Environ. Sci. 2, 466 (2009).CrossRefGoogle Scholar
  3. 3.
    A.V. Dmitriev and I.P. Zvyagin, Phys. Usp. 53, 789 (2010).CrossRefGoogle Scholar
  4. 4.
    Y. Lan, A.J. Minnich, G. Chen, and Z. Ren, Adv. Funct. Mater. 20, 357 (2010).CrossRefGoogle Scholar
  5. 5.
    L.P. Bulat, V.T. Bublik, I.A. Drabkin, V.V. Karataev, V.B. Osvenskii, YuN Parkhomenko, G.I. Pivovarov, D.A. Pshenai-Severin, and NYu Tabachkova, J. Electron. Mater. 39, 1650 (2010).CrossRefGoogle Scholar
  6. 6.
    L.P. Bulat, D.A. Pshenai-Severin, I.A. Drabkin, V.V. Karatayev, V.B. Osvensky, Y.N. Parkhomenko, V.D. Blank, G.I. Pivovarov, V.T. Bublik, and N.Y. Tabachkova, J. Thermoelectr. 1, 1 (2011).Google Scholar
  7. 7.
    L.P. Bulat, I.A. Drabkin, V.V. Karatayev, V.B. Osvenskii, YuN Parkhomenko, M.G. Lavrentev, A.I. Sorokin, D.A. Pshenai-Severin, V.D. Blank, G.I. Pivovarov, V.T. Bublik, and NYu Tabachkova, J. Electron. Mater. 42, 2110 (2013).CrossRefGoogle Scholar
  8. 8.
    I.A. Drabkin, V.B. Osvenskii, A.I. Sorokin, L.P. Bulat, and G.I. Pivovarov, Thermoelectrics and their applications, ed. M.I. Fedorov (Saint Petersburg: Ioffe Physical-Technical Institute, 2013), p. 29.(in Russian).Google Scholar
  9. 9.
    I.A. Drabkin, V.L. Lebedev, and V.B. Osvenskii, Thermoelectrics and their applications, ed. M.I. Fedorov (Saint Petersburg: Ioffe Physical-Technical Institute, 2013), p. 415.(in Russian).Google Scholar
  10. 10.
    J.J. Shen, L.P. Hu, T.J. Zhu, and X.B. Zhao, Appl. Phys. Lett. 99, 356 (2011).Google Scholar
  11. 11.
    Q. Hao, J. Appl. Phys. 111, 014307 (2012).CrossRefGoogle Scholar
  12. 12.
    A.J.H. McGaughey and A. Jain, Appl. Phys. Lett. 100, 061911 (2012).CrossRefGoogle Scholar
  13. 13.
    H.J. Goldsmid, H.B. Lyon, and E.H. Volckmann, Proceedings of the 14th International Conference Thermoelectrics, IEEE (St. Petersburg, 1995), p. 16.Google Scholar
  14. 14.
    J. Callaway, Phys. Rev. 113, 1046 (1959).CrossRefGoogle Scholar
  15. 15.
    B.M. Goltsman, B.A. Kudinov, and I.A. Smirnov, Semiconductor thermoelectric materials based on Bi 2 Te 3 (Moskow: Nauka, 1972), p. 320.Google Scholar
  16. 16.
    K. Stecker, H. Süssmann, W. Eichler, W. Heiliger, and M. Stordeur, Wiss. Z. Martin-Luther-Univ. Halle/Wittenberg. Math-Naturwiss R 27, 5 (1978).Google Scholar
  17. 17.
    M.-S. Jeng, R. Yang, D. Song, and G. Chen, J. Heat Transf. 130, 042410 (2008).CrossRefGoogle Scholar
  18. 18.
    B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M.S. Dresselhaus, G. Chen, and Zh Ren, Science 320, 634 (2008).CrossRefGoogle Scholar
  19. 19.
    Y. Ma, Q. Hao, B. Poudel, Y. Lan, B. Yu, D. Wang, G. Chen, and Zh Ren, Nano Lett. 8, 2580 (2008).CrossRefGoogle Scholar
  20. 20.
    Y. Lan, B. Poudel, Y. Ma, D. Wang, M.S. Dresselhaus, G. Chen, and Z.F. Ren, Nano Lett. 9, 1419 (2009).CrossRefGoogle Scholar
  21. 21.
    W. Kim and A. Majumdar, J. Appl. Phys. 99, 084306 (2006).CrossRefGoogle Scholar
  22. 22.
    N. Mingo, D. Hauser, N.P. Kobayashi, M. Plissonnier, and A. Shakouri, Nano Lett. 9, 711 (2009).CrossRefGoogle Scholar
  23. 23.
    L.P. Bulat, V.B. Osvenskii, Y.N. Parkhomenko, and D.A. Pshenay-Severin, Proceedings of the 9th European Conference on Thermoelectrics (2011), p. A02P.Google Scholar

Copyright information

© TMS 2014

Authors and Affiliations

  • L. P. Bulat
    • 1
  • I. A. Drabkin
    • 2
  • V. V. Karatayev
    • 2
  • V. B. Osvenskii
    • 2
  • Yu. N. Parkhomenko
    • 2
  • D. A. Pshenay-Severin
    • 3
  • A. I. Sorokin
    • 2
  1. 1.National Research University ITMOSaint PetersburgRussia
  2. 2.GIREDMET Ltd. MoscowRussia
  3. 3.Ioffe Physical Technical InstituteSaint PetersburgRussia

Personalised recommendations