Journal of Electronic Materials

, Volume 43, Issue 6, pp 2109–2114 | Cite as

Unconventional Thin-Film Thermoelectric Converters: Structure, Simulation, and Comparative Study

  • Maciej Haras
  • Valeria Lacatena
  • Stéphane Monfray
  • Jean-François Robillard
  • Thomas Skotnicki
  • Emmanuel Dubois

Bi2Te3 or Sb2Te3 are the materials most widely used in thermoelectric generators (TEG) operating near room temperature. These materials are, however, environmentally harmful, expensive, and incompatible with complementary metal-oxide semiconductor technology, in contrast to silicon (Si), germanium (Ge), or silicon–germanium (SiGe). Although the thermopower (S) and electrical conductivity (σ) of Si and Ge are high, use in thermoelectricity is severely hindered by their high thermal conductivity (κ). By altering the phonon band structure of this Si films by use of an artificial phononic pattern, spectacular reduction of κ by two orders of magnitude has been demonstrated. To take full advantage of phonon band modification and scattering in thin films, converter structure based on thin-film membranes is proposed for κ reduction. To consolidate the position of Si-based materials, coupled charge and heat-transport simulations have been conducted to demonstrate the potential of the materials for thermoelectric conversion compared with such widespread materials as Bi2Te3. The effect of contact resistance on generator performance has been carefully taken into consideration to reflect integration constraints at the TEG level. For a temperature difference ΔT = 30 K, the maximum electrical power density reaches approximately 6 W/cm2 for Si and Ge, and approximately 3 W/cm2 for Si0.7Ge0.3, values which are similar to those for Bi2Te3. Finally, it is emphasized that the proposed approach is compatible with conventional Si technology and naturally provides augmented mechanical flexibility that substantially widens the field of application of thermal harvesting.

Key words

Thermoelectric conversion thermal conductivity reduction CMOS compatible materials harvested power density thin-film performance simulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).CrossRefGoogle Scholar
  2. 2.
    T.M. Tritt, Annu. Rev. Mater. Res. 41, 433 (2011).CrossRefGoogle Scholar
  3. 3.
    J. Yang and T. Caillat, MRS Bull. 31, 224 (2006).CrossRefGoogle Scholar
  4. 4.
    D.M. Rowe, Appl. Energy 40, 241 (1991).CrossRefGoogle Scholar
  5. 5.
    P. Nenninger and U. Marco, ABB Rev. 1, 47 (2011).Google Scholar
  6. 6.
    J. P. Carmo, L. M. Goncalves, and J. H. Correia, in Scanning Probe Microscopy in Nanoscience and Nanotechnology, vol. 2.2, ed. by B. Bhushan (Springer, Heidelberg, 2010), pp. 791–811.Google Scholar
  7. 7.
    V. Leonov, P. Fiorini, T. Torfs, R. J. M. Vullers, and C. Van Hoof, in 15th International Workshop on Thermal Investigations of ICs and Systems (Therminic) (2009), pp. 95–100.Google Scholar
  8. 8.
    L. Francioso, C. De Pascali, I. Farella, C. Martucci, P. Cretì, P. Siciliano, and A. Perrone, J. Power Sources 196, 3239 (2011).CrossRefGoogle Scholar
  9. 9.
    D.M. Rowe, Proc. IEE 125, 1113 (1978).Google Scholar
  10. 10.
    J. Minnich, M.S. Dresselhaus, Z.F. Ren, and G. Chen, Energy Environ. Sci. 2, 466 (2009).CrossRefGoogle Scholar
  11. 11.
    G. Min and D.M. Rowe, IEEE Trans. Energy Convers. 22, 528 (2007).CrossRefGoogle Scholar
  12. 12.
    T.M. Tritt, H. Böttner, and L. Chen, MRS Bull. 33, 366 (2008).CrossRefGoogle Scholar
  13. 13.
    B. Abeles, Phys. Rev. 131, 1906 (1963).CrossRefGoogle Scholar
  14. 14.
    W. Fulkerson, J.P. Moore, R.K. Williams, R.S. Graves, and D.L. McElroy, Phys. Rev. 167, 765 (1968).CrossRefGoogle Scholar
  15. 15.
    C.J. Glassbrenner and G.A. Slack, Phys. Rev. 134, A1058 (1964).CrossRefGoogle Scholar
  16. 16.
    J.-K. Yu, S. Mitrovic, D. Tham, J. Varghese, and J.R. Heath, Nat. Nano 5, 718 (2010).CrossRefGoogle Scholar
  17. 17.
    P.E. Hopkins, C.M. Reinke, M.F. Su, R.H. Olsson, E.A. Shaner, Z.C. Leseman, J.R. Serrano, L.M. Phinney, and I. El-Kady, Nano Lett. 11, 107 (2011).CrossRefGoogle Scholar
  18. 18.
    D. Narducci, G. Cerofolini, M. Ferri, F. Suriano, F. Mancarella, L. Belsito, S. Solmi, and A. Roncaglia, J. Mater. Sci. 48, 2779 (2012).CrossRefGoogle Scholar
  19. 19.
    G.A. Slack, CRC Handbook of Thermoelectrics (Boca Raton: CRC Press, 1995).Google Scholar
  20. 20.
    J. Nurnus, H. Bottner, and A. Lambrecht, in Twenty-Second International Conference on Thermoelectrics ICT (2003), pp. 655–660.Google Scholar
  21. 21.
    L.M. Goncalves, J.G. Rocha, C. Couto, P. Alpuim, G. Min, D.M. Rowe, and J.H. Correia, J. Micromech. Microeng. 17, S168 (2007).CrossRefGoogle Scholar
  22. 22.
    J. Kurosaki, A. Yamamoto, S. Tanaka, J. Cannon, K. Miyazaki, and H. Tsukamoto, J. Electron. Mater. 38, 1326 (2009).CrossRefGoogle Scholar
  23. 23.
    G. K. Wachutka, in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 9 (IEEE, New York, 1990), p. 1141.Google Scholar
  24. 24.
    G. Min and D.M. Rowe, Solid-State Electron. 43, 923 (1999).CrossRefGoogle Scholar
  25. 25.
    N. Stavitski, M.J.H. van Dal, A. Lauwers, C. Vrancken, A.Y. Kovalgin, and R.A.M. Wolters, IEEE Electron Device Lett. 29, 378 (2008).CrossRefGoogle Scholar
  26. 26.
    Z. Zhang, S.O. Koswatta, S.W. Bedell, A. Baraskar, M. Guillorn, S.U. Engelmann, Y. Zhu, J. Gonsalves, A. Pyzyna, M. Hopstaken, C. Witt, L. Yang, F. Liu, J. Newbury, W. Song, C. Cabral, M. Lofaro, A.S. Ozcan, M. Raymond, C. Lavoie, J.W. Sleight, K.P. Rodbell, and P.M. Solomon, IEEE Electron Device Lett. 34, 723 (2013).CrossRefGoogle Scholar
  27. 27.
    J.-Y.J. Lin, A.M. Roy, and K.C. Saraswat, IEEE Electron Device Lett. 33, 1541 (2012).CrossRefGoogle Scholar
  28. 28.
    R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, Nature 413, 597 (2001).CrossRefGoogle Scholar
  29. 29.
    L. W. da Silva, and M. Kaviany, in ASME International Mechanical Engineering Congress and Exposition, New Orleans, USA (ASME, New York, 2002), pp. 1–15.Google Scholar
  30. 30.
    X. Luo, M.B. Sullivan, and S.Y. Quek, Phys. Rev. B 86, 184111 (2012).CrossRefGoogle Scholar
  31. 31.
    M. Mizoshiri, M. Mikami, and K. Ozaki, Jpn. J. App. Phys. 52, 06GL07 (2013).Google Scholar
  32. 32.
    H.J. Goldsmid, A.R. Sheard, and D.A. Wright, Br. J. Appl. Phys. 9, 365 (1958).CrossRefGoogle Scholar
  33. 33.
    C.-H. Kuo, C.-S. Hwang, M.-S. Jeng, W.-S. Su, Y.-W. Chou, and J.-R. Ku, J. Alloys Compd. 496, 687 (2010).CrossRefGoogle Scholar
  34. 34.
    L. M. Goncalves, in Thermoelectrics and Its Energy Harvesting, ed. by D. M. Rowe (CRC Press, Boca Raton, 2012), pp. 407–426.Google Scholar
  35. 35.
    H. Scherrer and S. Scherrer, CRC Handbook of Thermoelectrics (Boca Raton: CRC Press, 1995).Google Scholar
  36. 36.
    M. Strasser, R. Aigner, C. Lauterbach, T.F. Sturm, M. Franosch, and G.K.M. Wachutka, Sensors Actuators Phys. 114, 362 (2004).CrossRefGoogle Scholar

Copyright information

© TMS 2014

Authors and Affiliations

  • Maciej Haras
    • 1
    • 2
  • Valeria Lacatena
    • 1
    • 2
  • Stéphane Monfray
    • 2
  • Jean-François Robillard
    • 1
  • Thomas Skotnicki
    • 2
  • Emmanuel Dubois
    • 1
  1. 1.IEMN UMR CNRS 8520Institut d’Electronique, de Microélectronique et de NanotechnologieVilleneuve d’AscqFrance
  2. 2.STMicroelectronics 850CrollesFrance

Personalised recommendations