Journal of Electronic Materials

, Volume 43, Issue 4, pp 879–883 | Cite as

Distinguishing Optical Behavior of Oxygen States and Native Deep Level Emission in ZnTe

  • Chihyu Chen
  • Jiazhen Zheng
  • Kevin Nguy
  • Fabian Naab
  • Jamie D. Phillips


The introduction of oxygen in ZnTe provides an isoelectronic radiative defect that can form an intermediate band attractive for optoelectronic applications. ZnTe also exhibits native deep level emission in close spectral proximity to oxygen emission, which can obscure the understanding of these electronic states. The photoluminescence characteristics of ZnTe epitaxial layers on GaAs are studied with the intentional introduction of oxygen and native deep levels. Native deep level emission at 1.8 eV demonstrates a reduced quenching in emission at increasing temperature and dominates at room temperature. However, the overall radiative emission of oxygen states at 1.9 eV in ZnTeO is reduced in samples in which native deep level emission is present. Despite the radiative nature and weak temperature dependence of luminescence efficiency, oxygen incorporation demonstrates significantly higher radiative emission that is maximized with the reduction of the native deep level emission.


Molecular beam epitaxy II-VI materials photoluminescence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Tablero, A. Marti, and A. Luque, Appl. Phys. Lett. 96, 121104 (2010).CrossRefGoogle Scholar
  2. 2.
    B. Lee and L.W. Wang, Appl. Phys. Lett. 96, 071903 (2010).CrossRefGoogle Scholar
  3. 3.
    W.M. Wang, A.S. Lin, and J.D. Phillips, Appl. Phys. Lett. 95, 011103 (2009).CrossRefGoogle Scholar
  4. 4.
    Y. Zhang, B.J. Skromme, and F.S. Turcosandroff, Phys. Rev. B 46, 3872 (1992).CrossRefGoogle Scholar
  5. 5.
    J.L. Merz, Phys. Rev. 176, 961 (1968).CrossRefGoogle Scholar
  6. 6.
    J.J. Hopfield, D.G. Thomas, and R.T. Lynch, Phys. Rev. Lett. 17, 312 (1966).CrossRefGoogle Scholar
  7. 7.
    K.V. Solov’ev, B.V. Lisovoi, and Y.A. Mironchenko, Tech. Phys. Lett. 23, 933 (1997).CrossRefGoogle Scholar
  8. 8.
    S. Iida, J. Phys. Soc. Jpn. 32, 142 (1972).CrossRefGoogle Scholar
  9. 9.
    M. Felici, A. Polimeni, M. Capizzi, Y. Nabetani, T. Okuno, K. Aoki, T. Kato, T. Matsumoto, and T. Hirai, Appl. Phys. Lett. 88, 101910 (2006).CrossRefGoogle Scholar
  10. 10.
    G. Shigaura, M. Ohashi, Y. Ichinohe, M. Kanamori, N. Kimura, T. Sawada, K. Suzuki, and K. Imai, J. Cryst. Growth 301, 297 (2007).CrossRefGoogle Scholar
  11. 11.
    M. Uchida, Y. Matsuda, T. Asahi, K. Sato, and O. Oda, J.␣Cryst. Growth 216, 134 (2000).CrossRefGoogle Scholar
  12. 12.
    G. Mandel, Phys. Rev. Gen. Phys. 134, 1073 (1964).Google Scholar
  13. 13.
    M.A. Berding, M. Vanschilfgaarde, A.T. Paxton, and A. Sher, J. Vac. Sci. Technol. A 8, 1103 (1990).CrossRefGoogle Scholar
  14. 14.
    J.D. Dow, R.D. Hong, S. Klemm, S.Y. Ren, M.H. Tsai, O.F. Sankey, and R.V. Kasowski, Phys. Rev. B 43, 4396 (1991).CrossRefGoogle Scholar
  15. 15.
    C.B. Norris, J. Electron. Mater. 9, 913 (1980).CrossRefGoogle Scholar
  16. 16.
    T. Tanaka, S. Kusaba, T. Mochinaga, K. Saito, Q.X. Guo, M. Nishio, K.M. Yu, and W. Walukiewicz, Appl. Phys. Lett. 100, 011905 (2012).CrossRefGoogle Scholar
  17. 17.
    Y.M. Yu, S. Nam, K.S. Lee, Y.D. Choi, and O. Byungsung, J.␣Appl. Phys. 90, 807 (2001).CrossRefGoogle Scholar
  18. 18.
    H. Venghaus and P.J. Dean, Phys. Rev. B 21, 1596 (1980).CrossRefGoogle Scholar

Copyright information

© TMS 2014

Authors and Affiliations

  • Chihyu Chen
    • 1
  • Jiazhen Zheng
    • 1
  • Kevin Nguy
    • 1
  • Fabian Naab
    • 2
  • Jamie D. Phillips
    • 1
  1. 1.Department of Electrical Engineering and Computer ScienceUniversity of MichiganAnn ArborUSA
  2. 2.Michigan Ion Beam LaboratoryUniversity of MichiganAnn ArborUSA

Personalised recommendations