Advertisement

Journal of Electronic Materials

, Volume 43, Issue 2, pp 493–505 | Cite as

Effect of the Addition of B2O3 on the Density, Microstructure, Dielectric, Piezoelectric and Ferroelectric Properties of K0.5Na0.5NbO3 Ceramics

  • P. Bharathi
  • K. B. R. Varma
Article

Abstract

Boron oxide (B2O3) addition to pre-reacted K0.5Na0.5NbO3 (KNN) powders facilitated swift densification at relatively low sintering temperatures which was believed to be a key to minimize potassium and sodium loss. The base KNN powder was synthesized via solid-state reaction route. The different amounts (0.1–1 wt%) of B2O3 were-added, and ceramics were sintered at different temperatures and durations to optimize the amount of B2O3 needed to obtain KNN pellets with highest possible density and grain size. The 0.1 wt% B2O3-added KNN ceramics sintered at 1,100 °C for 1 h exhibited higher density (97 %). Scanning electron microscopy studies confirmed an increase in average grain size with increasing B2O3 content at appropriate temperature of sintering and duration. The B2O3-added KNN ceramics exhibited improved dielectric and piezoelectric properties at room temperature. For instance, 0.1 wt% B2O3-added KNN ceramic exhibited d 33 value of 116 pC/N which is much higher than that of pure KNN ceramics. Interestingly, all the B2O3-added (0.1–1 wt%) KNN ceramics exhibited polarization–electric field (P vs. E) hysteresis loops at room temperature. The remnant polarization (P r) and coercive field (E c) values are dependent on the B2O3 content and crystallite size.

Key words

Boron oxide density grain size piezoelectric properties crystallite size K0.5Na0.5NbO3 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Damjanovic, N. Klein, J. Li, and V.P. Khonskyy, Funct. Mater. Lett. 4, 5 (2010).CrossRefGoogle Scholar
  2. 2.
    T.R. Shrout and S.J. Zhang, J. Eletroceram. 19, 111 (2007).Google Scholar
  3. 3.
    J. Rodel, W. Jo, K.T.P. Seifert, E.-M. Anton, T. Granzow, and D. Damjanovic, J. Am. Ceram. Soc. 92, 1153 (2009).CrossRefGoogle Scholar
  4. 4.
    M. Dermatin Maeder, D. Damjanovic, and N. Setter, J. Eletroceram. 13, 385 (2004).CrossRefGoogle Scholar
  5. 5.
    L. Egerton and D.M. Dillon, J. Am. Ceram. Soc. 42, 438 (1959).CrossRefGoogle Scholar
  6. 6.
    R. Zuo, J. Rodel, R. Chen, and L. tu Li, J. Am. Ceram. Soc. 89, 2010 (2006).CrossRefGoogle Scholar
  7. 7.
    Y. Guo, K. Kakimoto, and H. Ohsato, Appl. Phys. Lett. 85, 4121 (2004).CrossRefGoogle Scholar
  8. 8.
    J. Wu, D. Xiao, Y. Wang, J. Zhu, P. Yu, and Y. Jiang, J. Appl. Phys. 102, 114113 (2007).CrossRefGoogle Scholar
  9. 9.
    E. Hollenstein, M. Davis, D. Damjanovic, and N. Setter, Appl. Phys. Lett. 87, 182905 (2005).CrossRefGoogle Scholar
  10. 10.
    H.-Y. Park, C.-W. Ahn, H.-C. Song, J.-H. Lee, S. Nahm, K. Uchino, H.-G. Lee, and H.-J. Lee, Appl. Phys. Lett. 89, 062906 (2006).CrossRefGoogle Scholar
  11. 11.
    K. Wang and J.-F. Li, J. Adv. Ceram. 1, 24 (2012).CrossRefGoogle Scholar
  12. 12.
    W.D. Kingery, J. Appl. Phys. 30, 301 (1959).CrossRefGoogle Scholar
  13. 13.
    B. Shri Prakash and K.B.R. Varma, J. Solid State Chem. 180, 1918 (2007).CrossRefGoogle Scholar
  14. 14.
    T. Ogawa, K. Ishii, T. Matsumoto, and T. Nishina, Jpn. J. Appl. Phys. 51, 09LD03-1 (2012).Google Scholar
  15. 15.
    J. Ryu, J.J. Choi, B.D. Hahn, D.S. Park, W.H. Yoon, and K.Y. Kim, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 2510 (2007).CrossRefGoogle Scholar
  16. 16.
    T. Skidmore and S. Milne, J. Mater. Res. 22, 2265 (2007).CrossRefGoogle Scholar
  17. 17.
    T.A. Skidmore, T. Stevenson, T.P. Comyn, and S.J. Milne, Key Eng. Mater. 368, 1886 (2008).CrossRefGoogle Scholar
  18. 18.
    R. Lopez-Juarez, O. Novelo-Peralta, F. Gonzalez-Garcia, F. Rubio-Marcos, and M.-E. Villafuerte-Castrejon, J. Eur. Ceram. Soc. 31, 1861 (2011).CrossRefGoogle Scholar
  19. 19.
    K. Uchino, Ferroelectric Devices (New York: Marcel Dekker, 2000), p. 94.Google Scholar
  20. 20.
    H.T. Martirena and J.C. Burfoot, J. Phys. C Solid State Phys. 7, 3182 (1974).CrossRefGoogle Scholar
  21. 21.
    S.E. Park and T. Shrout, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44, 1140 (1997).CrossRefGoogle Scholar

Copyright information

© TMS 2013

Authors and Affiliations

  1. 1.Materials Research CentreIndian Institute of ScienceBangaloreIndia

Personalised recommendations