Journal of Electronic Materials

, Volume 43, Issue 6, pp 1983–1987 | Cite as

The Effect of Te Substitution for Sb on Thermoelectric Properties of Tetrahedrite

Article

Abstract

We present the study of the effect of Te substitution on the thermoelectric properties for Sb in Cu12Sb4−xTexS13 tetrahedrite compounds with x ranging from 0.2 to 1.5 in the temperature range of room temperature to 723 K. Powder x-ray diffraction and electron microscopy results indicate a successful homogenous substitution without the alteration of the crystal structure or the introduction of secondary phases. Thermoelectric property measurements show that the excess electrons from Te during the substitution fill the unoccupied levels near the top of the valence bands in pure Cu12Sb4S13 compound, moving the Fermi level closer to the top of the valence bands. This leads to an enhancement in thermopower but also to an increase in electrical resistivity. Overall, the reduction in total thermal conductivity gives rise to improved ZT values in all substituted samples. The highest ZT value obtained in this study is 0.92 at 723 K for x = 1, which is comparable to that of other p-type bulk thermoelectric materials.

Keywords

Low thermal conductivity thermoelectric mineral-based compound tetrahedrites 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Amatya and R.J. Ram, J. Electron. Mater. 41, 1011 (2012).CrossRefGoogle Scholar
  2. 2.
    J.P. Heremans, V. Jovovic, E.S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, and G.J. Snyder, Science 321, 554 (2008).CrossRefGoogle Scholar
  3. 3.
    Y. Pei, H. Wang, and G.J. Snyder, Adv. Mater. 24, 6124 (2012).CrossRefGoogle Scholar
  4. 4.
    K. Biswas, J. He, I.D. Blum, C.-I. Wu, T.P. Hogan, D.N. Seidman, V.P. Dravid, and M.G. Kanatzidis, Nature 489, 414 (2012).CrossRefGoogle Scholar
  5. 5.
    X. Lu, D.T. Morelli, Y. Xia, F. Zhou, V. Ozolins, H. Chi, X. Zhou, and C. Uher, Adv. Energy Mater. 3, 342 (2013).CrossRefGoogle Scholar
  6. 6.
    K. Suekuni, K. Tsuruta, M. Kunii, H. Nishiate, E. Nishibori, S. Maki, M. Ohta, A. Yamamoto, and M. Koyano, J. Appl. Phys. 113, 043712 (2013).CrossRefGoogle Scholar
  7. 7.
    J.W. Miller and J.R. Craig, Am. Mineral. 68, 227 (1983).Google Scholar
  8. 8.
    X. Lu and D. Morelli, Phys. Chem. Chem. Phys. 15, 5762 (2013).CrossRefGoogle Scholar
  9. 9.
    A.G. Trudu and U. Knittel, Can. Miner. 36, 1115 (1998).Google Scholar
  10. 10.
    R. Jeanloz and M.L. Johnson, Phys. Chem. Miner. 11, 52 (1984).CrossRefGoogle Scholar

Copyright information

© TMS 2013

Authors and Affiliations

  1. 1.Department of Physics & AstronomyMichigan State UniversityEast LansingUSA
  2. 2.Department of Chemical Engineering & Materials ScienceMichigan State UniversityEast LansingUSA

Personalised recommendations