Journal of Electronic Materials

, Volume 43, Issue 2, pp 512–521 | Cite as

Effects of Heat-Treatment Temperature on the Microstructure, Electrical and Dielectric Properties of M-Type Hexaferrites

  • Ihsan Ali
  • M. U. Islam
  • M. S. Awan
  • Mukhtar Ahmad
Article

Abstract

M-type hexaferrite BaCrxGaxFe12−2xO19 (x = 0.2) powders have been synthesized by use of a sol–gel autocombustion method. The powder samples were pressed into 12-mm-diameter pellets by cold isostatic pressing at 2000 bar then heat treated at 700°C, 800°C, 900°C, and 1000°C. X-ray diffraction patterns of the powder sample heat treated at 1000°C confirmed formation of the pure M-type hexaferrite phase. The electrical resistivity at room temperature was significantly enhanced by increasing the temperature of heat treatment and approached 5.84 × 109 Ω cm for the sample heat treated at 1000°C. Dielectric constant and dielectric loss tangent decreased whereas conductivity increased with increasing applied field frequency in the range 1 MHz–3 GHz. The dielectric properties and ac conductivity were explained on the basis of space charge polarization in accordance with the Maxwell–Wagner two-layer model and Koop’s phenomenological theory. The single-phase synthesized materials may be useful for high-frequency applications, for example reduction of eddy current losses and radar absorbing waves.

Key words

Hexaferrites microstructure heat treatment dielectric properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.M. Abo El Ata, M.K. El Nimr, D. El Kony, and A.H. AL-Hammad, J. Magn. Magn. Mater. 204, 36 (1999).CrossRefGoogle Scholar
  2. 2.
    A. Kale, S. Gubbala, and R.D.K. Misara, J. Magn. Magn. Mater. 277, 350 (2004).CrossRefGoogle Scholar
  3. 3.
    C. Kittle, Phys. Rev. 70, 965 (1946).CrossRefGoogle Scholar
  4. 4.
    C.A. Stergiou, I. Manolakis, T.V. Yioultsis, and G. Litsardakis, J. Magn. Magn. Mater. 322, 1532 (2010).CrossRefGoogle Scholar
  5. 5.
    H. Kojima, Ferromagnetic Materials, Vol. 3, ed. E.P. Wohlfarth (Amsterdam: North-Holland Publishing Company, 1982), p. 305.Google Scholar
  6. 6.
    L. Junliang, Z. Yanwei, G. Cuijing, Z. Wei, and Y. Xiaowei, J. Eur. Ceram. Soc. 30, 993 (2010).CrossRefGoogle Scholar
  7. 7.
    N. Rezlescu, C. Doroftei, E. Rezlescu, and P.D. Popa, J. Alloys Compd. 451, 492 (2008).CrossRefGoogle Scholar
  8. 8.
    S. Ounnunkada and P. Winotai, J. Magn. Magn. Mater. 301, 292 (2006).CrossRefGoogle Scholar
  9. 9.
    I. Bsoul and S.H. Mahmood, J. Alloys Compd. 489, 110 (2010).CrossRefGoogle Scholar
  10. 10.
    I. Ali, M.U. Islam, M.S. Awan, and M. Ahmad, J. Alloys Compd. 547, 118 (2013).CrossRefGoogle Scholar
  11. 11.
    I. Ali, M.U. Islam, M.S. Awan, and M. Ahmad, J. Mater. Eng. Perform. (2013). doi:10.1007/s11665-013-0484-4.Google Scholar
  12. 12.
    I. Ali, M.U. Islam, M.S. Awan, M. Ahmad, M.N. Ashiq, and S. Naseem, J. Alloys Compd. 550, 564 (2013).CrossRefGoogle Scholar
  13. 13.
    K.K. Mallick, P. Shepherd, and R.J. Green, J. Eur. Ceram. Soc. 27, 2045 (2007).CrossRefGoogle Scholar
  14. 14.
    A. Mali and A. Ataie, Scripta Mater. 53, 1066 (2005).CrossRefGoogle Scholar
  15. 15.
    P. Shepherd, K.K. Mallick, and R.J. Green, J. Magn. Magn. Mater. 311, 683 (2007).CrossRefGoogle Scholar
  16. 16.
    J.F. Wang, C.B. Ponton, and I.R. Harris, J. Alloys Compd. 403, 104 (2005).CrossRefGoogle Scholar
  17. 17.
    W. Yongfei, L. Qiaoling, Z. Cunrui, and J. Hongxia, J. Alloys Compd. 467, 284 (2009).CrossRefGoogle Scholar
  18. 18.
    H. Sim, J.M. Xue, and J. Wang, Mater. Lett. 58, 2032 (2004).CrossRefGoogle Scholar
  19. 19.
    S. Che, J. Wang, and Q. Chen, J. Phys. Condens. Mater. 15, L335 (2003).CrossRefGoogle Scholar
  20. 20.
    M. Ahmad, I. Ali, F. Aen, M.U. Islam, M.N. Ashiq, S. Atiq, W. Ahmad, and M.U. Rana, Ceram. Int. 38, 1267 (2012).CrossRefGoogle Scholar
  21. 21.
    H.C. Fang, Z. Yang, C.K. Ong, Y. Lie, and C.S. Wang, J. Magn. Magn. Mater. 187, 129 (1998).CrossRefGoogle Scholar
  22. 22.
    S.E. Jacobo, L. Civali, and M.A. Blesa, J. Magn. Magn. Mater. 37, 260 (2003).Google Scholar
  23. 23.
    A.K. Jonscher, Dielectric Relaxation in Solids (London: Chelsea Dielectric Press, 1983).Google Scholar
  24. 24.
    M.F. Mostafa, M.M. Abd. El Kader, A.S. Atallah, and M.K. El Nimr, Phys. Status Solidi A 135, 549 (1993).CrossRefGoogle Scholar
  25. 25.
    K.M. Batoo, S. Kumar, C.G. Lee, and Alimuddin, J. Curr. Appl. Phys. 9, 826 (2009).CrossRefGoogle Scholar
  26. 26.
    K.C. Kao, Dielectric Phenomena in Solids, Ch. 2 (San Diego, CA: Elsevier Academic Press, 2004), p. 51.Google Scholar
  27. 27.
    N. Gupta, M.C. Dimri, S.C. Kashyap, and D.C. Dube, Ceram. Int. 31, 171 (2005).CrossRefGoogle Scholar
  28. 28.
    M.N. Ashiq, M.J. Iqbal, and I.H. Gul, J. Alloys Compd. 487, 341 (2009).CrossRefGoogle Scholar
  29. 29.
    J. Huang, H. Zhuang, and W.L. Li, Mater. Res. Bull. 38, 149 (2003).CrossRefGoogle Scholar
  30. 30.
    L. Jia, J. Luo, H. Zhang, G. Xue, and Y. Jing, J. Alloys Compd. 489, 162 (2010).CrossRefGoogle Scholar
  31. 31.
    Y.P. Wu, C.K. Ong, Z.W. Li, L. Chen, and G.Q. Lin, J. Appl. Phys. 97, 063909 (2005).CrossRefGoogle Scholar
  32. 32.
    C.G. Koops, Phys. Rev. 83, 121 (1951).CrossRefGoogle Scholar
  33. 33.
    A.M. Shaikh, S.S. Bellard, and B.K. Chougule, J. Magn. Magn. Mater. 195, 384 (1999).CrossRefGoogle Scholar
  34. 34.
    I.T. Rabinkin and Z.I. Novikova, Ferrites (Minsk: Izv Acad, Nauk USSR, 1960), p. 146.Google Scholar
  35. 35.
    S.B. Narang and I.S. Hudiara, J. Ceram. Process. Res. 7, 113 (2006).Google Scholar
  36. 36.
    R.G. Kharabe, R.S. Devan, C.M. Kanamadi, and B.K. Chougule, Smart Mater. Struct. 15, N36 (2006).CrossRefGoogle Scholar
  37. 37.
    P.V. Reddy, T.S. Rao, and J. Less, Common Metals 86, 255 (1982).CrossRefGoogle Scholar
  38. 38.
    B.K. Kunar and G.P. Srivastava, J. Appl. Phys. 75, 6115 (1994).CrossRefGoogle Scholar
  39. 39.
    M.A. El Hiti, J. Magn. Magn. Mater. 192, 305 (1999).CrossRefGoogle Scholar
  40. 40.
    M.B. Reddy and P.V. Reddy, Appl. Phys. (UK) 24, 975 (1991).Google Scholar
  41. 41.
    S.C. Watawe, B.D. Sarwede, S.S. Bellad, B.D. Sutar, and B.K. Chougule, J. Magn. Magn. Mater. 214, 55 (2000).CrossRefGoogle Scholar
  42. 42.
    S.S. Bellad and B.K. Chougule, Mater. Chem. Phys. 66, 58 (2000).CrossRefGoogle Scholar
  43. 43.
    K.P. Padmasree, D.K. Kanchan, and A.R. Kulkarni, Solid State Ion. 177, 475 (2006).CrossRefGoogle Scholar
  44. 44.
    M.J. Iqbal, M.N. Ashiq, and I.H. Gul, J. Magn. Magn. Mater. 322, 1720 (2010).CrossRefGoogle Scholar
  45. 45.
    R.S. Devan, Y.R. Ma, and B.K. Chougule, Mater. Chem. Phys. 115, 263 (2009).CrossRefGoogle Scholar
  46. 46.
    A. Kumar, B.P. Singh, R.N. Choudhary, P. Awalendra, and K. Thakur, Mater. Chem. Phys. 99, 150 (2006).CrossRefGoogle Scholar

Copyright information

© TMS 2013

Authors and Affiliations

  • Ihsan Ali
    • 1
  • M. U. Islam
    • 1
  • M. S. Awan
    • 2
  • Mukhtar Ahmad
    • 1
  1. 1.Department of PhysicsBahauddin Zakariya UniversityMultanPakistan
  2. 2.Center for Micro and Nano Devices, Department of PhysicsCOMSATS Institute of Information TechnologyIslamabadPakistan

Personalised recommendations