Journal of Electronic Materials

, Volume 43, Issue 3, pp 702–707 | Cite as

Dynamic Mechanical Properties and Thermal Effect of an Epoxy Resin Composite, Encapsulation’s Element of a New Electronic Component

  • W. Rmili
  • M.P. Deffarges
  • F. Chalon
  • Z. Ma
  • R. Leroy
Article

Abstract

Epoxy resin is used in many industrial applications principally in the microelectronic field to protect integrated circuits. However, these components are subject to various environments such as moisture and thermal fluctuations during packaging. Consequently, mechanical, physical and chemical properties of the resin can be affected. For an epoxy resin composite designed for a future application, an evaluation of the relevant properties was carried out using a dynamic mechanical analyzer and a thermogravimetric analysis (TGA) instrument. The surface morphology was investigated using scanning electron microscopy to examine the impact of post-cured treatment through evolution of the rigidity and of the glass transition temperature. Subsequently, a temperature classification was proposed to define the temperature limit for safe use of the material. Finally, temperature degradation was observed and confirmed by TGA tests. Results from all of these analyses bring understanding to the phenomenon of thermal degradation and its influence on the stability of the epoxy resin composite.

Keywords

Microelectronic component epoxy resin dynamic mechanical analysis thermal degradation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.S. Bhatnagar, The polymeric Materials Encyclopedia © (Boca Raton: CRC, 1996), pp. 1–11.Google Scholar
  2. 2.
    S.J. Park and F.L. Jin, Polym. Degrad. Stab. 86, 515 (2004).CrossRefGoogle Scholar
  3. 3.
    M.P. Zanni-Deffarges and M.E.R. Shanahan, J. Adhes. 45, 245 (1994).CrossRefGoogle Scholar
  4. 4.
    X. Buch (PhD thesis, Ecole des Mines de Paris (ENSMP), 2000)Google Scholar
  5. 5.
    C. Galant, B. Fayolle, M. Kuntz, and J. Verdu, Prog. Org. Coat. 69, 322 (2010).CrossRefGoogle Scholar
  6. 6.
    M. Mravljak and M. Sernek, Druna Industrija 62, 19 (2011).CrossRefGoogle Scholar
  7. 7.
    R.J. Morgan and J.E. O’Neal, Polym. Plast. Technol. Eng. 10, 49 (1978).CrossRefGoogle Scholar
  8. 8.
    J. Lange, A. Luisier, and A. Hult, J. Coat. Technol. 69 (872), 77 (1997).Google Scholar
  9. 9.
    R. Polansky, V. Mentlik, P. Prosr, and J. Susir, Polym. Test. 28, 428 (2009).CrossRefGoogle Scholar
  10. 10.
    G.A. Pogany, Br. Polym. J. 1, 177 (1969).CrossRefGoogle Scholar
  11. 11.
    X. Buch and M.E.R. Shanahan, J. Appl. Polym. Sci. 76, 987 (2000).CrossRefGoogle Scholar
  12. 12.
    X. Buch and M.E.R. Shanahan, Polym. Degrad. Stab. 68, 403 (2000).CrossRefGoogle Scholar
  13. 13.
    O. Zabihi, Thermochem. Acta 543, 239 (2012).CrossRefGoogle Scholar

Copyright information

© TMS 2013

Authors and Affiliations

  • W. Rmili
    • 1
  • M.P. Deffarges
    • 1
  • F. Chalon
    • 1
  • Z. Ma
    • 1
  • R. Leroy
    • 1
  1. 1.Laboratoire de Mécanique et Rhéologie, Polytech’Tours, Département Mécanique SystèmesUniversité François Rabelais de ToursToursFrance

Personalised recommendations