Journal of Electronic Materials

, Volume 43, Issue 2, pp 541–547 | Cite as

Dynamics of SiO2 Buried Layer Removal from Si-SiO2-Si and Si-SiO2-SiC Bonded Substrates by Annealing in Ar

  • L.-G. LiEmail author
  • S. Rubino
  • Ö. Vallin
  • J. Olsson


Silicon-on-silicon-carbide substrates could be ideal for high-power and radiofrequency silicon devices. Such hybrid wafers, when made by wafer bonding, contain an intermediate silicon dioxide layer with poor thermal characteristics, which can be removed by high-temperature annealing in an inert atmosphere. To understand the dynamics of this process, removal of 2.4-nm-thick SiO2 layers from Si-SiO2-Si and Si-SiO2-SiC substrates has been studied at temperatures ranging from 1100°C to 1200°C. The substrates were analyzed by transmission electron microscopy, electron energy-loss spectroscopy, secondary-ion mass spectroscopy, and ellipsometry, before and after annealing. For oxide thickness less than 2.4 nm, the activation energy for oxide removal was estimated to be 6.4 eV, being larger than the activation energy reported for removal of thicker oxides (4.1 eV). Under the same conditions, the SiO2 layer became discontinuous. In the time domain, three steps could be distinguished: bulk diffusion, bulk diffusion with void formation, and bulk diffusion with disintegration. The void formation, predominant here, has an energetic cost that could explain the larger activation energy. The oxide remaining after prolonged annealing corresponds to one layer of oxygen atoms.


Dynamics of oxygen outdiffusion ultrathin SOI hybrid substrates Si-SiC hybrid substrates oxide-free hybrid substrates 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D.-M. Martin, Ö. Vallin, J. Lu, L.-G. Li, U. Smith, H. NorstrÖm, and J. Olsson, IEEE 2008 International SOI Conference (2008), p. 69.Google Scholar
  2. 2.
    S. Lotfi, L.-G. Li, Ö. Vallin, L. Vestling, H. NorstrÖm, and J. Olsson, Solid State Electron. 70, 14 (2012).CrossRefGoogle Scholar
  3. 3.
    L.-G. Li, Ö. Vallin, J. Lu, U. Smith, H. NorstrÖm, and J. Olsson, Solid State Electron. 54, 153 (2010).CrossRefGoogle Scholar
  4. 4.
    L.-G. Li, Ö. Vallin, J. Lu, U. Smith, H. NorstrÖm, and J. Olsson, ECS Trans. 16, 377 (2008).Google Scholar
  5. 5.
    J.C. Mikkelsen, J. Mater. Res. Soc. Symp. Proc. 59, 19 (1986).CrossRefGoogle Scholar
  6. 6.
    A. Barcz, A. Panas, and R. Jakiela, Semicond. Sci. Technol. 19, 1311 (2004).CrossRefGoogle Scholar
  7. 7.
    K.-Y. Ahn, R. Stengl, T.Y. Tan, U. Gösele, and P. Smith, Appl. Phys. A 50, 85 (1990).CrossRefGoogle Scholar
  8. 8.
    B. Mohadjeri, M.R. Baklanov, E. Kondoh, and K. Maex, J. Appl. Phys. 83, 3614 (1998).CrossRefGoogle Scholar
  9. 9.
    M. Reiche, S. Hopfe, U. Gösele, H. Strutzberg, and Q.-Y. Tong, Jpn. J. Appl. Phys. 35, 2102 (1996).CrossRefGoogle Scholar
  10. 10.
    J. Sullivan, H.R. Kirk, K. Sien, P.J. Ong, and F.J. Henley, 2006 IEEE International SOI Conference (2006), p. 39.Google Scholar

Copyright information

© TMS 2013

Authors and Affiliations

  1. 1.The Ångström Laboratory, Solid State ElectronicsUppsala UniversityUppsalaSweden
  2. 2.The Ångström Laboratory, Applied Material ScienceUppsala UniversityUppsalaSweden

Personalised recommendations