Journal of Electronic Materials

, Volume 42, Issue 11, pp 3309–3319 | Cite as

Theoretical Modeling of HOT HgCdTe Barrier Detectors for the Mid-Wave Infrared Range

Open Access
Article

Abstract

This paper reports on theoretical modeling of medium-wavelength infrared HgCdTe barrier infrared detector (BIRD) photoelectrical performance. BIRD HgCdTe detectors were simulated with the commercially available software APSYS. Detailed analysis of the detector performance such as dark current, photocurrent, resistance–area product, detectivity versus applied bias, operating temperature, and structural parameters (absorber doping, barrier composition) was performed to determine the optimal operating conditions. It is shown that higher operation temperature conditions achievable with commonly used thermoelectric coolers allow detectivities of D = 9.5 × 1010 cmHz1/2/W and D* = 1.5 × 1011 cmHz1/2/W at T = 200 K to be obtained for the correct absorber doping for nBnnn+ and nBnpn+, respectively. R0A for the nBnnn+ detector was found to range from 200 Ω cm2 to 0.6 Ω cm2 at T = 200 K to 300 K, respectively.

Keywords

HgCdTe unipolar barrier nBnn(p) nBnn(p)n+ Auger suppression photoelectric gain 

References

  1. 1.
    A. Rogalski, Infrared Detectors, 2nd ed. (Boca Raton, FL: CRC Press, 2011).Google Scholar
  2. 2.
    K. Jóźwikowski, M. Kopytko, J. Piotrowski, A. Jóźwikowska, Z. Orman, and A. Rogalski, Solid-State Electron. 63, 8 (2011).Google Scholar
  3. 3.
    K. Jóźwikowski, A. Jóźwikowska, M. Kopytko, A. Rogalski, and L.R. Jaroszewicz, Infrared Phys. Technol. 55, 98 (2012).CrossRefGoogle Scholar
  4. 4.
    S. Maimon and G. Wicks, Appl. Phys. Lett. 89, 151109-1 (2006).Google Scholar
  5. 5.
    P. Klipstein, Proc. SPIE. 6940, 69402U-1 (2008).Google Scholar
  6. 6.
    D.Z.-Y. Ting, A. Soibel, L. Höglund, J. Nguyen, C.J. Hill, A. Khoshakhlagh, and S.D. Gunapala, Semiconductors and Semimetals, vol. 84, ed. S.D. Gunapala, D.R. Rhiger, and C. Jagadish (Amsterdam: Elsevier, 2011), pp. 1–57.Google Scholar
  7. 7.
    D.Z. Ting, C.J. Hill, A. Soibel, J. Nguyen, S. Keo, M.C. Lee, J.M. Mumolo, J.K. Liu, and S.D. Gunapala, Proc. SPIE. 7660, 76601R (2010).CrossRefGoogle Scholar
  8. 8.
    E.H. Aifer, J.G. Tischler, J.H. Warner, I. Vurgaftman, J.C. Kim, J.R. Meyer, B.R. Bennett, and L.J. Whitman, Proc. SPIE. 5732, 259 (2005).CrossRefGoogle Scholar
  9. 9.
    B.M. Nguyen, D. Hoffman, P.Y. Delaunay, and M. Razeghi, Appl. Phys. Lett. 91, 163511 (2007).CrossRefGoogle Scholar
  10. 10.
    O. Salihoglu, A. Muti, K. Kutluer, T. Tansel, and R. Turan, Appl. Phys. Lett. 101, 073505 (2012).CrossRefGoogle Scholar
  11. 11.
    A. Rogalski and P. Martyniuk, Infrared Phys. Technol. 48, 39 (2006).CrossRefGoogle Scholar
  12. 12.
    J.B. Rodriguez, E. Plis, G. Bishop, Y.D. Sharma, H. Kim, L.R. Dawson, and S. Krishna, Appl. Phys. Lett. 91, 043514-1 (2007).Google Scholar
  13. 13.
    P. Martyniuk and A. Rogalski, Proc. SPIE 6940, 694004 (2008).CrossRefGoogle Scholar
  14. 14.
    P. Martyniuk and A. Rogalski, Bull. Pol. Acad. Tech. Sci. 57, 103 (2009).Google Scholar
  15. 15.
    J. Wróbel, P. Martyniuk, E. Plis, P. Madejczyk, W. Gawron, S. Krishna, and A. Rogalski, Proc. SPIE. 8353, 8353-16 (2012).Google Scholar
  16. 16.
    A.M. Itsuno, J.D. Philips, and S. Velicu, J. Electron. Mater. 40, 9 (2011).CrossRefGoogle Scholar
  17. 17.
    S. Velicu, J. Zhao, M. Morley, A.M. Itsuno, and J.D. Philips, Proc. SPIE. 8268, 82682X (2012).CrossRefGoogle Scholar
  18. 18.
    P. Martyniuk and A. Rogalski, Solid-State Electron. 80, 96 (2013).CrossRefGoogle Scholar
  19. 19.
    J.W. Garland and Ch. Grein, Extended Abstracts, The 2012 Workshop on the Physics and Chemistry of II–VI Materials, Seattle (2012).Google Scholar
  20. 20.
    J.F. Klem, J.K. Kim, M.J. Cich, S.D. Hawkins, T.R. Fortune, and J.L. Rienstra, Proc. SPIE. 7608, 76081P (2010).CrossRefGoogle Scholar
  21. 21.
    P.Y. Emelie, J.D. Philips, S. Velicu, and C.H. Grein, J. Electron. Mater. 36, 8 (2007).Google Scholar
  22. 22.
    A.M. Itsuno, J.D. Philips, and S. Velicu, IEEE Trans. Electron Devices 58, 2 (2011).CrossRefGoogle Scholar
  23. 23.
    A.M. Itsuno, J.D. Philips, and S. Velicu, J. Electron. Mater. 40, 9 (2012).Google Scholar
  24. 24.
    Y. Guldner, Y.G. Bastard, J.P. Vieren, and M. Voos, Phys. Rev. Lett. 51, 907 (1983).CrossRefGoogle Scholar
  25. 25.
    Z. Yang, Z. Yu, and Y. Lansari, et al., Phys. Rev. B 49, 8096 (1994).CrossRefGoogle Scholar
  26. 26.
    M. Schultz, U. Merkt, and A. Sonntag, et al., Phys. Rev. B 57, 14772 (1998).CrossRefGoogle Scholar
  27. 27.
    C.K. Shih and W.E. Spicer, Phys. Rev. Lett. 58, 2594 (1987).CrossRefGoogle Scholar
  28. 28.
    A.M. Itsuno, J.D. Phillips, and S. Velicu, Appl. Phys. Lett. 100, 161102 (2012).CrossRefGoogle Scholar
  29. 29.
    P. Martyniuk, J. Wrobel, E. Plis, P. Madejczyk, A. Kowalewski, W. Gawron, S. Krishna, and A. Rogalski, Semicond. Sci. Technol. 27, 055002 (2012).CrossRefGoogle Scholar
  30. 30.
    A.I. D’souza, E. Robinson, A.C. Ionescu, D. Okerlund, T.J. De Lyon, H. Sharifi, M. Roebuck, D. Yap, R.D. Rajavel, N. Dhar, P.S. Wijewarnasuriya, and C. Grein, J. Electron. Mater. 41, 10 (2012).Google Scholar
  31. 31.
    W.E. Tennant, D. Lee, M. Zandian, E. PiQuette, and M. Carmody, J. Electron. Mater. 37, 9 (2008).CrossRefGoogle Scholar
  32. 32.
    APSYS Macro/User’s Manual ver. 2011 (Burnaby: Crosslight Software, Inc., 2011).Google Scholar

Copyright information

© The Author(s) 2013

Open AccessThis article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Authors and Affiliations

  1. 1.Institute of Applied PhysicsMilitary University of TechnologyWarsawPoland

Personalised recommendations