Advertisement

Journal of Electronic Materials

, Volume 42, Issue 10, pp 2905–2909 | Cite as

Specific Contact Resistance Measurement of Screen-Printed Ag Metal Contacts Formed on Heavily Doped Emitter Region in Multicrystalline Silicon Solar Cells

  • P. Narayanan VinodEmail author
Article

Abstract

Multicrystalline silicon (mc-Si) wafers are widely used to develop low-cost high-efficiency screen-printed solar cells. In this study, the electrical properties of screen-printed Ag metal contacts formed on heavily doped emitter region in mc-Si solar cells have been investigated. Sintering of the screen-printed metal contacts was performed by a co-firing step at 725°C in air ambient followed by low-temperature annealing at 450°C for 15 min. Measurement of the specific contact resistance (ρ c) of the Ag contacts was performed by the three-point probe method, showing a best value of ρ c = 1.02 × 10−4 Ω cm2 obtained for the Ag contacts. This value is considered as a good figure of merit for screen-printed Ag electrodes formed on a doped mc-Si surface. The plot of ρ c versus the inverse of the square root of the surface doping level (N s −½ ) follows a linear relationship for impurity doping levels N s ≥ 1019 atoms/cm3. The power losses due to current traveling through various resistive components of finished solar cells were calculated by using standard expressions. Cross-sectional scanning electron microscopy (SEM) views of the Ag metal and doped mc-Si region show that the Ag metal is firmly coalesced with the doped mc-Si surface upon sintering at an optimum firing temperature of 725°C.

Keywords

Multicrystalline silicon screen-printed Ag contacts sintering barrier potential contact resistance impurity doping level 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.F. Nijs, J. Szlufcik, J. Poortmans, S. Sivoththaman, and R.P. Mertens, IEEE Trans. Electron Devices ED-46, 1948 (1999).Google Scholar
  2. 2.
    D.K. Schroder and D.L. Meier, IEEE Trans. Electron Devices ED-31, 637 (1984).Google Scholar
  3. 3.
    S.M. Sze, The Physics of the Semiconductor Devices, 2nd edn (New York: Wiley, 2002), pp. 3–22.Google Scholar
  4. 4.
    P.N. Vinod, Semicond. Sci. Technol. 20, 966 (2005).CrossRefGoogle Scholar
  5. 5.
    H.H. Berger, Solid State Electron. 15, 145 (1972).CrossRefGoogle Scholar
  6. 6.
    C.Y. Chang, Y.K. Fang, and S.M. Sze, Solid State Electron. 14, 541 (1971).CrossRefGoogle Scholar
  7. 7.
    H.C. Card, IEEE Electron Devices ED-23, 539 (1976).Google Scholar
  8. 8.
    P.N. Vinod, B.C. Chakravarty, R. Kumar, M. Lal, and S.N. Singh, Semicond. Sci. Technol. 16, 285 (2000).Google Scholar
  9. 9.
    G.K. Reeves and H.B. Harrison, Electron. Lett. 18, 1083 (1982).CrossRefGoogle Scholar
  10. 10.
    H. El-Omari, J.P. Boyeaux, and A. Laugier, Proceedings of 25th IEEE Photovoltaic Specialists Conference, Washington DC (New York, IEEE, 1996), p. 585.Google Scholar
  11. 11.
    S. Silvestre, D. Patron, L. Castener, J. Carter, and P. Ashburn, Proceedings of 25th IEEE Photovoltaic Specialists Conference, Washington DC (New York: IEEE, 1996), p. 497.Google Scholar
  12. 12.
    H.B. Harrison, G.K. Reeves, IEEE Electron Device Lett.. EDL-5, 111 (1982).Google Scholar
  13. 13.
    J.D. Plummer and P.B. Griffin, Proc. IEEE 89, 240 (2001). doi: 10.1109/5.915373.CrossRefGoogle Scholar
  14. 14.
    G. Schubert, F. Huster, and P. Fath, Sol. Energy Mater. Sol. Cells 90, 3399 (2006).CrossRefGoogle Scholar
  15. 15.
    P.N. Vinod, J. Mater. Sci.: Mater. Electron. 22, 1248 (2011).CrossRefGoogle Scholar
  16. 16.
    P.N. Vinod, J. Alloy. Compd. 470, 393 (2009).CrossRefGoogle Scholar
  17. 17.
    I.B. Cooper, A. Ebong, B.C. Rounsaville, and A. Rohatgi, IEEE Trans. Electron Devices ED-37, 2872 (2010).Google Scholar
  18. 18.
    P.N. Vinod, Proceedings of 14th International Workshop on the Physics of Semiconductor Devices (IWPSD), Bombay, India (Narosha, 2007), p. 953.Google Scholar
  19. 19.
    D.L. Meier and D.K. Schroder, IEEE Trans. Electron Devices ED-31, 647 (1984).Google Scholar
  20. 20.
    P.N. Vinod, J. Mater. Sci.: Mater. Electron. 19, 594 (2008).CrossRefGoogle Scholar

Copyright information

© TMS 2013

Authors and Affiliations

  1. 1.Naval Physical and Oceanographic LaboratoryCochinIndia

Personalised recommendations