Advertisement

Journal of Electronic Materials

, Volume 42, Issue 10, pp 2897–2904 | Cite as

Simultaneous Formation of Ohmic Contacts on p +- and n +-4H-SiC Using a Ti/Ni Bilayer

  • Sung-Jae Joo
  • Sangwon Baek
  • Sang-Cheol Kim
  • Jeong-Soo Lee
Article

Abstract

In this work, Ti/Ni bilayer contacts were fabricated on both p +- and n +-4H-SiC formed by ion implantation, and the effects of the Ti interlayer on the contact resistance and interfacial microstructure were studied. Adoption of a thin (10 nm) Ti interlayer resulted in specific contact resistance of 4.8 μΩ cm2 and 1.3 mΩ cm2 on n +- and p +-4H-SiC, respectively, comparable to the values for contacts using only Ni. Moreover, contacts using Ti/Ni provide a flat and uniform interface between Ni2Si and SiC, whereas discontinuous, agglomerated Ni2Si islands are formed without the use of a Ti interlayer. In addition, the Ti interlayer was demonstrated to effectively dissociate the thin oxide film on SiC, which is advantageous for low-resistance, reliable ohmic contact formation. In summary, use of a Ti/Ni bilayer is a promising solution for one-step formation of ohmic contacts on both p +- and n +-4H-SiC, being especially suitable for SiC n-channel metal-oxide-semiconductor field-effect transistor (nMOSFET) fabrication.

Keywords

4H-SiC ohmic contact Ti Ni 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Tanimoto, M. Miyabe, T. Shiiyama, T. Suzuki, H. Yamaguchi, S. Nakashima, and H. Okumura, Mater. Sci. Forum 679–680, 465 (2011).CrossRefGoogle Scholar
  2. 2.
    S.-H. Ryu, S. Krishnaswami, M. O’Loughlin, J. Richmond, A. Agarwal, J. Palmour, and A.R. Hefner, IEEE Electron. Dev. Lett. 25, 556 (2004).CrossRefGoogle Scholar
  3. 3.
    F. Roccaforte, F. La Via, and V. Raineri, Int. J. High Speed Electron. Syst. 15, 781 (2005).CrossRefGoogle Scholar
  4. 4.
    J. Crofton, L. Beyer, J.R. Williams, E.D. Luckowski, S.E. Mohney, and J.M. Delucca, Solid-State Electron. 41, 1725 (1997).CrossRefGoogle Scholar
  5. 5.
    J. Crofton, S.E. Mohney, J.R. Williams, and T. Isaacs-Smith, Solid-State Electron. 46, 109 (2002).CrossRefGoogle Scholar
  6. 6.
    O. Nakatsuka, T. Takei, Y. Koide, and M. Murakami, Mater. Trans. 43, 1684 (2002).CrossRefGoogle Scholar
  7. 7.
    F. Moscatelli, A. Scorzoni, A. Poggi, G.C. Cardinali, and R. Nipoti, Semicond. Sci. Technol. 18, 554 (2003).CrossRefGoogle Scholar
  8. 8.
    B. Pécz, L. Tóth, M.A. di Forte-Poisson, and J. Vacas, Appl. Surf. Sci. 206, 8 (2003).CrossRefGoogle Scholar
  9. 9.
    B.J. Johnson and M.A. Capano, Solid State Electron. 47, 1437 (2003).CrossRefGoogle Scholar
  10. 10.
    R. Konishi, R. Yasukochi, O. Nakatsuka, Y. Koide, M. Moriyama, and M. Murakami, Mater. Sci. Eng. B98, 286 (2003).CrossRefGoogle Scholar
  11. 11.
    H. Vang, M. Lazar, P. Brosselard, C. Raynaud, P. Cremillieu, J.-L. Leclercq, J.-M. Bluet, S. Scharnholz, and D. Planson, Superlattices Microstruct. 40, 626 (2006).CrossRefGoogle Scholar
  12. 12.
    L.G. Fursin, J.H. Zhao, and M. Weiner, Electron. Lett. 37, 1092 (2001).CrossRefGoogle Scholar
  13. 13.
    B. Pécz, G. Radnóczi, S. Cassette, C. Brylinski, C. Arnodo, and C. Noblanc, Diam. Relat. Mater. 6, 1428 (1997).CrossRefGoogle Scholar
  14. 14.
    T.S. Marinova, A. Kakanakova-Georgieva, V. Krastev, R. Kakanakov, M. Neshev, L. Kassamakova, O. Noblanc, C. Arnodo, S. Cassette, C. Brylinski, B. Pécz, G. Radnoczi, and G. Vincze, Mater. Sci. Eng. B46, 223 (1997).CrossRefGoogle Scholar
  15. 15.
    R. Liu, ULSI Technology, ed. C.Y. Chang and S.M. Sze (Singapore: McGraw-Hill, 1996), p. 371.Google Scholar
  16. 16.
    J.H. Park and P.H. Holloway, J. Vac. Sci. Technol. B 23, 486 (2005).CrossRefGoogle Scholar
  17. 17.
    R. Pérez, N. Mestres, D. Tournier, P. Godignon, and J. Millán, Diam. Relat. Mater. 14, 1146 (2005).CrossRefGoogle Scholar
  18. 18.
    T. Ohyanagi, Y. Onose, and A. Watanabe, J. Vac. Sci. Technol. B 26, 1359 (2008).CrossRefGoogle Scholar
  19. 19.
    P. Macháč, B. Barda, and J. Maixner, Appl. Surf. Sci. 254, 1691 (2008).CrossRefGoogle Scholar
  20. 20.
    W. Kern and D.A. Puotinen, RCA Rev. 31, 187 (1970).Google Scholar
  21. 21.
    E. Oliviero, M. Lazar, H. Vang, C. Dubois, P. Cremilleu, J.L. Leclercq, J. Dazord, and D. Planson, Mater. Sci. Forum 556–557, 611 (2007).CrossRefGoogle Scholar
  22. 22.
    S.W. Russell, J.W. Strane, J.W. Mayer, and S.Q. Wang, J. Appl. Phys. 76, 257 (1994).CrossRefGoogle Scholar
  23. 23.
    F. La Via, F. Roccaforte, A. Makhtari, V. Raineri, P. Musemeci, and L. Calcagno, Microelectron. Eng. 60, 269 (2002).CrossRefGoogle Scholar
  24. 24.
    I.P. Nikitina, K.V. Vassilevski, A.B. Horsfall, N.G. Wright, A.G. O’Neill, C.M. Johnson, T. Yamamoto, and R.K. Malhan, Semicond. Sci. Technol. 21, 898 (2006).CrossRefGoogle Scholar
  25. 25.
    F. Goesmann and R. Schmid-Fetzer, Mater. Sci. Eng. B46, 357 (1997).CrossRefGoogle Scholar
  26. 26.
    M. Levit, I. Grimberg, and B.-Z. Weiss, J. Appl. Phys. 80, 167 (1996).CrossRefGoogle Scholar
  27. 27.
    S.Y. Han, K.H. Kim, J.K. Kim, H.W. Jang, K.H. Lee, N.-K. Kim, E.D. Kim, and J.-L. Lee, Appl. Phys. Lett. 79, 1816 (2001).CrossRefGoogle Scholar
  28. 28.
    Z. Wang, S. Tsukimoto, M. Saito, K. Ito, M. Murakami, and Y. Ikuhara, Phys. Rev. B 80, 245303 (2009).CrossRefGoogle Scholar
  29. 29.
    S. Li, Y. Zhou, and H. Duan, J. Mater. Sci. 37, 2575 (2002).CrossRefGoogle Scholar

Copyright information

© TMS 2013

Authors and Affiliations

  • Sung-Jae Joo
    • 1
  • Sangwon Baek
    • 2
  • Sang-Cheol Kim
    • 3
  • Jeong-Soo Lee
    • 2
  1. 1.Creative and Fundamental Research DivisionKorea Electrotechnology Research InstituteChangwonKorea
  2. 2.Department of Electrical & Electronic EngineeringPOSTECHPohangKorea
  3. 3.HVDC Research DivisionKorea Electrotechnology Research InstituteChangwonKorea

Personalised recommendations