Journal of Electronic Materials

, Volume 43, Issue 3, pp 658–670 | Cite as

Local and Global Properties of a Lead-Free Solder

  • Z. Ma
  • F. Chalon
  • R. Leroy
  • N. Ranganathan
  • B.D. Beake


Elastic and viscous properties including Young’s modulus, hardness, creep rate sensitivity, and fatigue resistance of Sn-1.2Ag-0.5Cu-0.05Ni lead-free solder have been investigated. The properties of bulk specimens and in situ solder balls are compared. Experiments show good correlations of Young’s modulus and creep rate sensitivity between conventional measurements and nanoindentation results on bulk specimens. Further mechanical properties of the beach-ball microstructure in solder balls are characterized by nanoindentation. The load–partial unload technique has been used to determine the variation in mechanical properties with increasing depth of penetration into the intermetallic inclusions in the in situ solder. The fatigue resistances of the bulk specimens and solder balls are compared by using the novel nanoimpact method. In comparison with bulk specimens, it is found that in situ solder has higher Young’s modulus, lower creep strain rate sensitivity, and better fatigue resistance. The effects of soldering and the scale differences strongly affect the mechanical and fatigue properties of in situ solder.


Lead-free solder elastic modulus creep nanoindentation nanoimpact intermetallics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D.Y.R. Chong, F.X. Chen, J.H.L. Pang, K. Ng, J.Y.N. Tan, and P.T.H. Low, Microelectron. Reliab. 46, 1160 (2006).CrossRefGoogle Scholar
  2. 2.
    M. Kerr and N. Chawala, Acta Mater. 52, 4527 (2004).CrossRefGoogle Scholar
  3. 3.
    W. Yang, L.E. Felton, and J.R.W. Messler, J. Electron. Mater. 24, 1465 (1995).CrossRefGoogle Scholar
  4. 4.
    J.H.L. Pang, T.H. Low, B.S. Xiong, X. Luhua, and C.C. Neo, Thin Solid Films 462–463, 370 (2004).CrossRefGoogle Scholar
  5. 5.
    H. Tsukamoto, T. Nishimura, S. Suenaga, and K. Nogita, Mater. Sci. Eng. B 171, 162 (2010).CrossRefGoogle Scholar
  6. 6.
    J.Y.H. Chia, B. Cotterell, and T.C. Chai, Mater. Sci. Eng. A 417, 259 (2006).CrossRefGoogle Scholar
  7. 7.
    M.J. Mayo and W.D. Nix, Acta Metall. 36, 2183 (1988).CrossRefGoogle Scholar
  8. 8.
    R. Goodall and Y.W. Clyne, Acta Mater. 54, 5489 (2006).CrossRefGoogle Scholar
  9. 9.
    V.L. Niranjani, B.S.S. Chandra Rao, R. Sarkar, and S.V. Kamat, J. Alloys Compd. 542, 136 (2012).CrossRefGoogle Scholar
  10. 10.
    F. Gao and T. Takemoto, Mater. Lett. 60, 2315 (2006).CrossRefGoogle Scholar
  11. 11.
    L. Shen, P. Septiwerdani, and Z. Chen, Mater. Sci. Eng. A 558, 253 (2012).CrossRefGoogle Scholar
  12. 12.
    L. Shen, W.C.D. Cheong, Y.L. Foo, and Z. Chen, Mater. Sci. Eng. A 532, 505 (2012).CrossRefGoogle Scholar
  13. 13.
    V.M.F. Marques, C. Johnston, and P.S. Grant, Acta Mater. 61, 2460 (2013).CrossRefGoogle Scholar
  14. 14.
    V.M.F. Marques, B. Wunderle, C. Johnston, and P.S. Grant, Acta Mater. 61, 2471 (2013).CrossRefGoogle Scholar
  15. 15.
    B.D. Beake, S.P. Lau, and J.F. Smith, Surf. Coat. Technol. 177–178, 611 (2004).CrossRefGoogle Scholar
  16. 16.
    B.D. Beake and J.F. Smith, Surf. Coat. Technol. 188–189, 594 (2004).CrossRefGoogle Scholar
  17. 17.
    B.D. Beake, R. Stephen, James. Goodes, and F. Smith, J. Mater. Res. 19, 237 (2004).CrossRefGoogle Scholar
  18. 18.
    W.R. La Fontaine, B. Yost, R.D. Black, and C.Y. Li, J. Mater. Res. 5, 2100 (1990).CrossRefGoogle Scholar
  19. 19.
    B.N. Lucas and W.C. Oliver, Metall. Mater. Trans. A 30A, 601 (1999).CrossRefGoogle Scholar
  20. 20.
    F.Q. Li and C.Q. Wang, Trans. Nonferr. Met. Soc. China 16, 18 (2006).CrossRefGoogle Scholar
  21. 21.
    Y. Xia, X. Xie, C. Lu, and J. Chang, J. Alloy Compd. 417, 143 (2006).CrossRefGoogle Scholar
  22. 22.
    K. Nogita, Intermetallics 18, 145 (2010).CrossRefGoogle Scholar
  23. 23.
    K. Dong and G. Shang, Lead Free Solder Interconnect Reliability (Materials Park, OH: ASM International, 2005), p. 77.Google Scholar
  24. 24.
    J. Bath, Lead-Free Soldering, Lead Free Solder Joint Reliability (Springer, New York, 2007), p. 160.Google Scholar
  25. 25.
    F. Ochoa, X. Deng, and N. Chawala, J. Electron. Mater. 33, 1596 (2004).CrossRefGoogle Scholar
  26. 26.
    X. Deng, N. Chawla, K. Chawla, and M. Koopman, Acta Mater. 52, 4291 (2004).CrossRefGoogle Scholar
  27. 27.
    T.R. Bieler and T. Lee, eds., Lead-Free Solder, Encyclopedia of Materials: Science and Technology, 2nd edn. (Elsevier, Oxford, 2010), pp. 1–12.Google Scholar
  28. 28.
    L.P. Lehman, Y. Xing, T.R. Bieler, and E.J. Cotts, Acta Mater. 58, 3546 (2010).CrossRefGoogle Scholar
  29. 29.
    S.P. Peng, W.H. Wu, C.E. Ho, and Y.M. Huang, J. Alloy. Compd. 493, 431 (2010).CrossRefGoogle Scholar
  30. 30.
    R. An, C. Wang, and Y. Tian, International Conference on Electronic Packaging Technology & High Density Packaging (July, 2008), pp. 1–5.Google Scholar
  31. 31.
    A.A. El-Daly and A.M. El-Taher, Mater. Des. 47, 607 (2013).CrossRefGoogle Scholar
  32. 32.
    F. Guo, S. Choi, K.N. Subramanian, T.R. Bieler, J.P. Lucas, A. Achari, and M. Paruchuri, Mater. Sci. Eng. A351, 190 (2003).CrossRefGoogle Scholar
  33. 33.
    S. Spigarelli, E. Cerri, P. Bianchi, and E. Evangelista, Mater. Sci. Technol. 15, 1433 (1999).CrossRefGoogle Scholar
  34. 34.
    D.V.V. Satyanarayana, G. Malakondaiah, and D.S. Sarma, Mater. Sci. Eng. A. 452, 244 (2007).CrossRefGoogle Scholar
  35. 35.
    J. Čadek, V. Šustek, and M. Pahutová, Mater. Sci. Eng. A. 225, 22 (1997).CrossRefGoogle Scholar
  36. 36.
    A. Orlová, K. Kuchařová, J. Březina, J. Krejčí, and J. Čadek, Scr. Metall. Mater. 29, 63 (1993).CrossRefGoogle Scholar
  37. 37.
    J. Cˇadek, H. Oikawa, and V. Sˇustek, Mater. Sci. Eng. 190, 9 (1995).CrossRefGoogle Scholar
  38. 38.
    R.S. Mishra, T.R. Bieler, and A.K. Mukherjee, Acta Metall. 43, 877 (1995).CrossRefGoogle Scholar
  39. 39.
    A.A. El-Daly, Y. Swilem, and A.E. Hammad, J. Alloy. Compd. 471, 98 (2009).CrossRefGoogle Scholar
  40. 40.
    F. Guo, J. Lee, J.P. Lucas, K.N. Subramanian, and T.R. Bieler, J. Electron. Mater. 30, 231 (2001).Google Scholar
  41. 41.
    E. Arzt and E. Gohring, Acta Mater. 16, 6575 (1998).CrossRefGoogle Scholar
  42. 42.
    J.H. Schroder and E. Arzt, Scr. Metall. 19, 1129 (1985).CrossRefGoogle Scholar
  43. 43.
    S. Wiese, M. Roelling, and K.-J. Wolter, Electronic Components and Technology Conference 2, 1272 (2005).Google Scholar
  44. 44.
    A.K. Bhattacharya and W.D. Nix, Int. J. Solids Struct. 24, 1287 (1988).CrossRefGoogle Scholar
  45. 45.
    C.A. Schuh, J.K. Mason, and A.C. Lund, Nat. Mater. 4, 617 (2005).CrossRefGoogle Scholar
  46. 46.
    Z. Ma, S. Belhenini, D. Joly, F. Chalon, R. Leroy, N. Ranganathan, F. Qin, F. Doisseul, 13th International Conference on Electronic Packaging Technology and High Density Packaging (ICEPT-HDP). 1367, 13 (2012).Google Scholar

Copyright information

© TMS 2013

Authors and Affiliations

  • Z. Ma
    • 1
  • F. Chalon
    • 1
  • R. Leroy
    • 1
  • N. Ranganathan
    • 1
  • B.D. Beake
    • 2
  1. 1.LMR (Laboratoire de Mécanique et Rhélologie)Université François Rabelais de ToursToursFrance
  2. 2.Micro Materials LimitedWrexhamUK

Personalised recommendations