Journal of Electronic Materials

, Volume 42, Issue 8, pp 2492–2497 | Cite as

Theoretical Study on Structural Stability of Fully Filled p-Type Skutterudites RETM4Sb12 (RE = Rare Earth; TM = Fe, Ru)

  • Zhuo Chen
  • Jiong Yang
  • Ruiheng Liu
  • Lili Xi
  • Wenqing Zhang
  • Jihui Yang


The structural stability of filled p-type skutterudites RETM4Sb12 (RE = rare earth; TM = Fe, Ru) was studied via ab initio calculations. Most of the RE metals (La–Ho and Yb) could be filled into the cages (voids) of Fe4Sb12 to form stable filled skutterudites. However, only a few RE metals (La–Nd and Eu) could be stably filled into the cage of Ru4Sb12-based skutterudites. Systematic analysis of bonding energy showed that the structural stability could be attributed to ionic radius and effective charge state differences of the RE fillers. Resonant rattling frequencies of the fillers in both Fe4Sb12- and Ru4Sb12-based skutterudites were also studied.


p-Type skutterudites structural stability ab initio resonant rattling frequency 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D.T. Morelli, G.P. Meisner, B.X. Chen, S.Q. Hu, and C. Uher, Phys. Rev. B 56, 7376 (1997).CrossRefGoogle Scholar
  2. 2.
    G.S. Nolas, J.L. Cohn, and G.A. Slack, Phys. Rev. B 58, 164 (1998).CrossRefGoogle Scholar
  3. 3.
    G.S. Nolas, M. Kaeser, R.T. Littleton, and T.M. Tritt, Appl. Phys. Lett. 77, 1855 (2000).CrossRefGoogle Scholar
  4. 4.
    V.L. Kuznetsov, L.A. Kuznetsova, and D.M. Rowe, J. Phys.: Condens. Matter 15, 5035 (2003).CrossRefGoogle Scholar
  5. 5.
    G.A. Lamberton, S. Bhattacharya, R.T. Littleton, M.A. Kaeser, R.H. Tedstrom, T.M. Tritt, J. Yang, and G.S. Nolas, Appl. Phys. Lett. 80, 598 (2002).CrossRefGoogle Scholar
  6. 6.
    L.D. Chen, T. Kawahara, X.F. Tang, T. Goto, T. Hirai, J.S. Dyck, W. Chen, and C. Uher, J. Appl. Phys. 90, 1864 (2001).CrossRefGoogle Scholar
  7. 7.
    M. Puyet, B. Lenoir, A. Dauscher, M. Dehmas, C. Stiewe, and E. Müller, J. Appl. Phys. 95, 4852 (2004).CrossRefGoogle Scholar
  8. 8.
    X.Y. Zhao, X. Shi, L.D. Chen, W.Q. Zhang, W.B. Zhang, and Y.Z. Pei, J. Appl. Phys. 99, 053711 (2006).CrossRefGoogle Scholar
  9. 9.
    Y.Z. Pei, L.D. Chen, W. Zhang, X. Shi, S.Q. Bai, X.Y. Zhao, Z.G. Mei, and X.Y. Li, Appl. Phys. Lett. 89, 221107 (2006).CrossRefGoogle Scholar
  10. 10.
    Y.Z. Pei, J. Yang, L.D. Chen, W. Zhang, J.R. Salvador, and J. Yang, Appl. Phys. Lett. 95, 042101 (2009).CrossRefGoogle Scholar
  11. 11.
    J. Yang, L. Xi, W. Zhang, L.D. Chen, and J. Yang, J. Electron. Mater. 38, 1397 (2009).CrossRefGoogle Scholar
  12. 12.
    G.A. Slack, Handbook of Thermoelectrics, ed. D.M. Rowe (Boca Raton, FL: CRC Press, 1995), p. 407.Google Scholar
  13. 13.
    J. Yang, W. Zhang, S.Q. Bai, Z. Mei, and L.D. Chen, Appl. Phys. Lett. 90, 192111 (2007).CrossRefGoogle Scholar
  14. 14.
    X. Shi, H. Kong, C.-P. Li, C. Uher, J. Yang, J.R. Salvador, H. Wang, L. Chen, and W. Zhang, Appl. Phys. Lett. 92, 182101 (2008).CrossRefGoogle Scholar
  15. 15.
    S.Q. Bai, Y.Z. Pei, L.D. Chen, W.Q. Zhang, X.Y. Zhao, and J. Yang, Acta Mater. 57, 3135 (2009).CrossRefGoogle Scholar
  16. 16.
    J.R. Salvador, J. Yang, H. Wang, and X. Shi, J. Appl. Phys. 107, 043705 (2010).CrossRefGoogle Scholar
  17. 17.
    X. Shi, J. Yang, J.R. Salvador, M.F. Chi, J.Y. Cho, H. Wang, S.Q. Bai, J.H. Yang, W.Q. Zhang, and L.D. Chen, J. Am. Chem. Soc. 133, 7837 (2011).CrossRefGoogle Scholar
  18. 18.
    R. Liu, J. Yang, X. Chen, X. Shi, L. Chen, and C. Uher, Intermetallics 19, 1747 (2011).CrossRefGoogle Scholar
  19. 19.
    X. Shi, W. Zhang, L. Chen, and J. Yang, Phys. Rev. Lett. 95, 185503 (2005).CrossRefGoogle Scholar
  20. 20.
    Z. Mei, W. Zhang, L. Chen, and J. Yang, Phys. Rev. B 74, 153202 (2006).CrossRefGoogle Scholar
  21. 21.
    Z. Mei, J. Yang, Y. Pei, W. Zhang, L. Chen, and J. Yang, Phys. Rev. B 77, 045202 (2008).CrossRefGoogle Scholar
  22. 22.
    X. Shi, W. Zhang, L. Chen, J. Yang, and C. Uher, Phys. Rev. B 75, 235208 (2007).CrossRefGoogle Scholar
  23. 23.
    L. Xi, J. Yang, W. Zhang, L. Chen, and J. Yang, J. Am. Chem. Soc. 131, 5560 (2009).CrossRefGoogle Scholar
  24. 24.
    L. Xi, J. Yang, C. Lu, Z. Mei, W. Zhang, and L. Chen, Chem. Mater. 22, 2384 (2010).CrossRefGoogle Scholar
  25. 25.
    X. Shi, W. Zhang, L.D. Chen, J. Yang, and C. Uher, Acta Mater. 56, 1733 (2008).CrossRefGoogle Scholar
  26. 26.
    W. Zhang, X. Shi, Z.G. Mei, Y. Xu, L.D. Chen, J. Yang, and G.P. Meisner, Appl. Phys. Lett. 89, 112105 (2006).CrossRefGoogle Scholar
  27. 27.
    D. J. Braun and W. Jeitschko, J. Less Common Met. 72, 147 (1980), and references therein.Google Scholar
  28. 28.
    T. Takabatake, E. Matsuoka, S. Narazu, K. Hayashi, S. Morimoto, T. Sasakawa, K. Umeo, and M. Sera, Phys. B 383, 93 (2006).CrossRefGoogle Scholar
  29. 29.
    W. Schnelle, A. Leithe-Jasper, H. Rosner, R. Cardoso-Gil, R. Gumeniuk, D. Trots, J.A. Mydosh, and Yu Grin, Phys. Rev. B 77, 094421 (2008).CrossRefGoogle Scholar
  30. 30.
    M.E. Danebrock, C.B.H. Evers, and W. Jeitschko, J. Phys. Chem. Solids 57, 381 (1996).CrossRefGoogle Scholar
  31. 31.
    W. Schnelle, A. Leithe-Jasper, M. Schmidt, H. Rosner, H. Borrmann, U. Burkhardt, J. A. Mydosh, and Y. Grin, Phys. Rev. B. 72, 020402(R) (2005).Google Scholar
  32. 32.
    D.T. Morelli and G.P. Meisner, J. Appl. Phys. 77, 3777 (1995).CrossRefGoogle Scholar
  33. 33.
    V.L. Kuznetsov and D.M. Rowe, J. Phys. 12, 7915 (2000).Google Scholar
  34. 34.
    P.F. Qiu, J. Yang, R.H. Liu, X. Shi, X.Y. Huang, G.J. Snyder, W. Zhang, and L.D. Chen, J. Appl. Phys. 109, 063713 (2011).CrossRefGoogle Scholar
  35. 35.
    J. Yang, P. Qiu, R. Liu, L. Xi, S. Zheng, W. Zhang, L. Chen, D. Singh, and J. Yang, Phys. Rev. B 84, 235205 (2011).CrossRefGoogle Scholar
  36. 36.
    N. Takeda and M. Ishikawa, J. Phys. Soc. Jpn. 69, 868 (2000).CrossRefGoogle Scholar
  37. 37.
    D.T. Adroja, K.A. Mcewen, J.-G. Parkc, A.D. Hiller, N. Takedad, and P.S. Riseborough, J. Optoelectron. Adv. Mater. 10, 1564 (2008).Google Scholar
  38. 38.
    Y. Nakai, K. Ishida, K. Magishi, H. Sugawara, D. Kikuchi, and H. Sato, J. Magn. Magn. Mater. 310, 255 (2007).CrossRefGoogle Scholar
  39. 39.
    Jiong Yang, R. Liu, Z. Chen, L. Xi, Jihui Yang, W. Zhang, and L. Chen, Appl. Phys. Lett. 101, 022101 (2012).Google Scholar
  40. 40.
    X. Tang, H. Li, Q. Zhang, M. Niino, and T. Goto, J. Appl. Phys. 100, 123702 (2005).CrossRefGoogle Scholar
  41. 41.
    G. Rogl, A. Grytsiv, E. Bauer, P. Rogl, and M. Zehetbauer, Intermetallics 18, 57 (2010).CrossRefGoogle Scholar
  42. 42.
    P.E. Blochl, Phys. Rev. B 50, 17953 (1994).CrossRefGoogle Scholar
  43. 43.
    J.P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).CrossRefGoogle Scholar
  44. 44.
    G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).CrossRefGoogle Scholar
  45. 45.
    H.J. Monkhorst and J.D. Pack, Phys. Rev. B 13, 5188 (1976).CrossRefGoogle Scholar
  46. 46.
    H. Okamoto, Desk Handbook: Phase Diagrams for Binary Alloys, ed. M.A. Fleming (Materials Park, OH: ASM International, 2000), p. 373.Google Scholar
  47. 47.
    T. Caillat, A. Borshchevsky, and J.P. Fleurial, J. Phase Equilib. 14, 576 (1993).CrossRefGoogle Scholar
  48. 48.
    B.C. Sales, B.C. Chakoumakos, and D. Mandrus, Phys. Rev. B 61, 2475 (2000).CrossRefGoogle Scholar
  49. 49.
    R. Liu, X. Chen, P. Qiu, J. Liu, J. Yang, X. Huang, and L. Chen, J. Appl. Phys. 109, 023719 (2011).CrossRefGoogle Scholar
  50. 50.
    B.C. Sales, Handbook on the Physics and Chemistry of the Rare Earths, ed. K.A. Gschneider, J.C. Bunzli and U.A. Pecharsky (Amsterdam, The Netherlands: Elsevier Science, 2002), vol. 33, p. 1.Google Scholar
  51. 51.
    R.D. Shannon, Acta Crystallogr. A A32, 751 (1976).CrossRefGoogle Scholar

Copyright information

© TMS 2013

Authors and Affiliations

  • Zhuo Chen
    • 1
  • Jiong Yang
    • 1
    • 2
  • Ruiheng Liu
    • 1
  • Lili Xi
    • 1
  • Wenqing Zhang
    • 1
  • Jihui Yang
    • 2
  1. 1.State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of CeramicsChinese Academy of SciencesShanghaiChina
  2. 2.Materials Science and Engineering DepartmentUniversity of WashingtonSeattleUSA

Personalised recommendations