Journal of Electronic Materials

, Volume 42, Issue 7, pp 2172–2177 | Cite as

Numerical Analysis of the Boundary Scattering Effect on Transport Properties in Bi-Sb Nanowires

  • Yuta Nabatame
  • Tsuyoshi Matsumoto
  • Yuki Ichige
  • Takashi Komine
  • Ryuji Sugita
  • Masayuki Murata
  • Yasuhiro Hasegawa
Article

Abstract

In this study, we have numerically analyzed the transport properties of Bi-Sb nanowires, taking into account wire boundary scattering. Wire boundary scattering slightly decreased the Seebeck coefficient of Bi-Sb nanowires. This effect is due to the observation that boundary scattering and the mobility ratio of L-point electrons to T-point holes in the nanowires are smaller than those in bulk Bi-Sb because the wire boundary scattering suppresses the mobilities of L-point electrons and heavy holes. The largest Seebeck coefficient for all wire diameters was obtained when the Sb concentration was 5 at.%. The effective mass approached zero near 5 at.% Sb, and the small effective mass led to a large subband shift in each band. Thus, a small effective mass enhances the quantum effect at a fixed wire diameter, even if wire boundary scattering is taken into account.

Keywords

Transport properties Bi-Sb nanowire wire boundary scattering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y.M. Lin, X. Sun, and M.S. Dresselhaus, Phys. Rev. B 62, 4610 (2000).CrossRefGoogle Scholar
  2. 2.
    M. S. Dresselhaus, In Proceedings of the Conference on the Physics of Semimetals and Narrow Gap Semiconductors, ed. D.L. Carter and R.T. Bate (New York: Pergamon Press, 1970), p. 3.Google Scholar
  3. 3.
    J.P. Michenaud and J.P. Issi, J. Phys. C: Solid State Phys. 5, 3061 (1972).CrossRefGoogle Scholar
  4. 4.
    J. Heremans, D.L. Partin, C.M. Thrush, G. Karczewski, M.S. Richardson, and J.K. Furdyna, Phys. Rev. B 48, 11329 (1993).CrossRefGoogle Scholar
  5. 5.
    O. Rabin, Y.M. Lin, and M.S. Dresselhaus, Appl. Phys. Lett. 79, 81 (2001).CrossRefGoogle Scholar
  6. 6.
    M. Murata, D. Nakamura, Y. Hasegawa, T. Komine, T. Taguchi, S. Nakamura, C.M. Jaworski, V. Jovovic, and J.P. Heremans, J. Appl. Phys. 105, 113706 (2009).CrossRefGoogle Scholar
  7. 7.
    B. Lax, J.G. Mavroides, H.J. Zeiger, and R.J. Keyes, Phys. Rev. Lett. 5, 241 (1960).CrossRefGoogle Scholar
  8. 8.
    R.T. Isaacson and G.A. Williams, Phys. Rev. 185, 682 (1969).CrossRefGoogle Scholar
  9. 9.
    J. Heremans and O.P. Hansen, J. Phys. C 12, 3483 (1979).CrossRefGoogle Scholar
  10. 10.
    X. Sun, Z. Zhang, and M.S. Dresselhaus, Appl. Phys. Lett. 74, 4005 (1999).CrossRefGoogle Scholar
  11. 11.
    T. Koga, T.C. Harman, S.B. Cronin, and M.S. Dresselhaus, Phys. Rev. B 60, 14286 (1999).CrossRefGoogle Scholar
  12. 12.
    G.S. Nolas, J. Sharp, and H.J. Goldsmid, Thermoelectrics: Basic Principles and New Materials Developments (Berlin: Springer, 2001).Google Scholar

Copyright information

© TMS 2013

Authors and Affiliations

  • Yuta Nabatame
    • 1
  • Tsuyoshi Matsumoto
    • 1
  • Yuki Ichige
    • 1
  • Takashi Komine
    • 1
  • Ryuji Sugita
    • 1
  • Masayuki Murata
    • 2
  • Yasuhiro Hasegawa
    • 2
  1. 1.Faculty of EngineeringIbaraki UniversityHitachiJapan
  2. 2.Faculty of EngineeringSaitama UniversitySakura-kuJapan

Personalised recommendations