Journal of Electronic Materials

, Volume 42, Issue 5, pp 838–843 | Cite as

Growth and Characterization of In x Ga1−x N Multiple Quantum Wells Without Phase Separation

  • P. V. Wadekar
  • Q. Y. Chen
  • H. C. Huang
  • Y. T. Lin
  • C. W. Chang
  • H. W. Seo
  • T. W. Dung
  • M. C. Chou
  • S. W. Feng
  • N. J. Ho
  • D. Wijesundera
  • W. K. Chu
  • L. W. Tu
Article

Abstract

Efficient conversion of photon energy into electricity is a crucial step toward a sustainable solar-energy economy. Likewise, solid-state lighting devices are gaining prominence because of benefits such as reduced energy consumption and reduced toxicity. Among the various semiconductors investigated, In x Ga1–x N alloys or superlattices are fervently pursued because of their large range of bandgaps between 0.65 eV and 3.4 eV. This paper reports on the fabrication of multiple quantum wells on LiGaO2 (001) substrates by plasma-assisted molecular beam epitaxy. Metal modulated epitaxy was utilized to prevent formation of metal droplets during the growth. Streaky patterns, seen in reflection high-energy electron diffraction, indicate two-dimensional growth throughout the device. Postdeposition characterization using scanning electron microscopy also showed smooth surfaces, while high-resolution x-ray diffraction and high-resolution transmission electron microscopy confirm the epitaxial nature of the overall quantum well structure.

Keywords

Group III nitride MBE solar cell quantum well InN GaN superlattice 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Wu, W. Walukiewicz, K.M. Yu, W. Shan, J.W. Ager, E.E. Haller, H. Lu, W.J. Schaff, W.K. Metzger, and S. Kurtz, J. Appl. Phys. 94, 6477 (2003).CrossRefGoogle Scholar
  2. 2.
    R.H. Bube, Photovoltaic Materials (London: Imperial College Press, 1988).Google Scholar
  3. 3.
    L.A. Reichertz, I. Gherasoiu, K.M. Yu, V.M. Kao, W. Walukiewicz, and J.W. Ager III, Appl. Phys. Express. 2, 122202 (2009).CrossRefGoogle Scholar
  4. 4.
    R.J. Matyi, W.A. Doolittle, and A.S. Brown, J. Phys. D: Appl. Phys. 32, A61 (1999).CrossRefGoogle Scholar
  5. 5.
    G. Lia, S. Muc, and S.J. Shihb, Mater. Sci. Eng. B. 170, 14 (2010).Google Scholar
  6. 6.
    A. Yoshikawa, S.B. Che, W. Yamaguchi, H. Saito, X.Q. Wang, Y. Ishitani, and E.S. Hwang, Appl. Phys. Lett. 90, 073101 (2007).CrossRefGoogle Scholar
  7. 7.
    M. Moseley, D. Billingsley, W. Henderson, E. Trybus, and W.A. Dolittle, J. Appl. Phys. 106, 014095 (2009).CrossRefGoogle Scholar

Copyright information

© TMS 2013

Authors and Affiliations

  • P. V. Wadekar
    • 1
  • Q. Y. Chen
    • 1
    • 2
  • H. C. Huang
    • 3
  • Y. T. Lin
    • 1
  • C. W. Chang
    • 1
  • H. W. Seo
    • 4
  • T. W. Dung
    • 1
  • M. C. Chou
    • 3
  • S. W. Feng
    • 5
  • N. J. Ho
    • 3
  • D. Wijesundera
    • 2
  • W. K. Chu
    • 2
  • L. W. Tu
    • 1
  1. 1.Department of Physics and Center for Nanoscience and NanotechnologyNational Sun Yat-Sen UniversityKaohsiungTaiwan, ROC
  2. 2.Department of Physics and Texas Center for SuperconductivityUniversity of HoustonHoustonUSA
  3. 3.Department of Materials and Opto-electronic ScienceNational Sun Yat-Sen UniversityKaohsiungROC
  4. 4.Department of PhysicsUniversity of ArkansasLittle RockUSA
  5. 5.Department of Applied PhysicsNational University of KaohsiungKaohsiungTaiwan, ROC

Personalised recommendations