Journal of Electronic Materials

, Volume 42, Issue 7, pp 2091–2097 | Cite as

Calculation of Confined Phonon Spectrum in Narrow Silicon Nanowires Using the Valence Force Field Method

  • Hossein Karamitaheri
  • Neophytos Neophytou
  • Mohsen Karami Taheri
  • Rahim Faez
  • Hans Kosina


We study the effect of confinement on the phonon properties of ultra-narrow silicon nanowires of side sizes of 1 nm to 10 nm. We use the modified valence force field (MVFF) method to compute the phononic dispersion and extract the density of states, the transmission function, the sound velocity, the ballistic thermal conductance, and boundary-scattering-limited diffusive thermal conductivity. We find that the phononic dispersion and the ballistic thermal conductance are functions of the geometrical features of the structures, i.e., the transport orientation and confinement dimension. The phonon group velocity and thermal conductance can vary by a factor of two depending on the geometrical features of the channel. The 〈110#x232A; nanowire has the highest group velocity and thermal conductance, whereas the 〈111#x232A; has the lowest. The 〈111#x232A; channel is thus the most suitable orientation for thermoelectric devices based on Si nanowires since it also has a large power factor. Our findings could be useful in the thermal transport design of silicon-based devices for thermoelectric and thermal management applications.


Confined phonons silicon nanowires lattice thermal conductance modified valence force field method Landauer formula 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A.I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.-K. Yu, W.A. Goddard, and J.R. Heath, Nature 451, 168 (2008).CrossRefGoogle Scholar
  2. 2.
    A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, and P. Yang, Nature 451, 163 (2008).CrossRefGoogle Scholar
  3. 3.
    I. Ponomareva, D. Srivastava, and M. Menon, Nano Lett. 7, 1155 (2007).CrossRefGoogle Scholar
  4. 4.
    N. Yang, G. Zhang, and B. Li, Nano Lett. 8, 276 (2008).CrossRefGoogle Scholar
  5. 5.
    S.-C. Wang, X.-G. Liang, X.-H. Xu, and T. Ohara, J. Appl. Phys. 105, 014316 (2009).CrossRefGoogle Scholar
  6. 6.
    M. Liangraksa and I.K. Puri, J. Appl. Phys. 109, 113501 (2011).CrossRefGoogle Scholar
  7. 7.
    J.H. Oh, M. Shin, and M.-G. Jang, J. Appl. Phys. 111, 044304 (2012).CrossRefGoogle Scholar
  8. 8.
    N. Mingo, Phys. Rev. B 68, 113308 (2003).CrossRefGoogle Scholar
  9. 9.
    X. Lu and J. Chu, J. Appl. Phys. 100, 014305 (2006).CrossRefGoogle Scholar
  10. 10.
    M.-J. Huang, W.-Y. Chong, and T.-M. Chang, J. Appl. Phys. 99, 114318 (2006).CrossRefGoogle Scholar
  11. 11.
    P. Martin, Z. Aksamija, E. Pop, and U. Ravaiolo, Phys. Rev. Lett. 102, 125503 (2009).CrossRefGoogle Scholar
  12. 12.
    A. Paul, M. Luisier, and G. Klimeck, J. Appl. Phys. 110, 114309 (2011).CrossRefGoogle Scholar
  13. 13.
    Z. Sui and I.P. Herman, Phys. Rev. B 48, 17938 (1993).CrossRefGoogle Scholar
  14. 14.
    A. Paul, M. Luisier, and G. Klimeck, J. Comput. Electron. 9, 160–172 (2010).CrossRefGoogle Scholar
  15. 15.
    H. Karamitaheri, N. Neophytou, M. Pourfath, and H. Kosina, J. Comput. Electron. 11, 14 (2012).CrossRefGoogle Scholar
  16. 16.
    S. Datta, Quantum Transport: Atom to Transistor (Cambridge: Cambridge University Press, 2005).CrossRefGoogle Scholar
  17. 17.
    R. Landauer, IBM J. Res. Dev. 1, 223 (1957).CrossRefGoogle Scholar
  18. 18.
    Z. Aksamija and I. Knezevic, Phys. Rev. B 82, 045319 (2010).CrossRefGoogle Scholar
  19. 19.
    E.B. Ramayya, D. Vasileska, S.M. Goodnick, and I. Knezevic, J. Comput. Electron. 7, 319 (2008).CrossRefGoogle Scholar
  20. 20.
    J.M. Ziman, Electrons and Phonons: The Theory of Transport Phenomena in Solids (Oxford: Clarendon, 1962).Google Scholar
  21. 21.
    X. Lu, J. Appl. Phys. 104, 054314 (2008).CrossRefGoogle Scholar
  22. 22.
    A.J.H. McGaughey, E.S. Landry, D.P. Sellan, and C.H. Amon, Appl. Phys. Lett. 99, 131904 (2011).CrossRefGoogle Scholar
  23. 23.
    M. Luisier, Phys. Rev. B 86, 245407 (2012).CrossRefGoogle Scholar
  24. 24.
    N. Neophytou and H. Kosina, Phys. Rev. B 83, 245305 (2011).CrossRefGoogle Scholar
  25. 25.
    Neophytou. Neophytos and Kosina. Hans, Nano Lett. 10, 4913 (2010).CrossRefGoogle Scholar
  26. 26.
    T. Thonhauser and G.D. Mahan, Phys. Rev. B 69, 075213 (2004).CrossRefGoogle Scholar
  27. 27.
    X. Lu, J.H. Chu, and W.Z. Shen, J. Appl. Phys. 93, 1219 (2003).CrossRefGoogle Scholar
  28. 28.
    J. Zou and A. Balandin, J. Appl. Phys. 89, 2932 (2001).CrossRefGoogle Scholar

Copyright information

© TMS 2013

Authors and Affiliations

  • Hossein Karamitaheri
    • 1
    • 2
  • Neophytos Neophytou
    • 1
  • Mohsen Karami Taheri
    • 3
  • Rahim Faez
    • 2
  • Hans Kosina
    • 1
  1. 1.Institute for MicroelectronicsTU WienWienAustria
  2. 2.School of Electrical EngineeringSharif University of TechnologyTehranIran
  3. 3.Department of Computer Engineering, Naragh BranchIslamic Azad UniversityNaraghIran

Personalised recommendations