Advertisement

Journal of Electronic Materials

, Volume 42, Issue 7, pp 2048–2055 | Cite as

Thermal Conductivity of an Individual Bismuth Nanowire Covered with a Quartz Template Using a 3-Omega Technique

  • Yasuhiro Hasegawa
  • Masayuki Murata
  • Fumiaki Tsunemi
  • Yusuke Saito
  • Katsuhito Shirota
  • Takashi Komine
  • Chris Dames
  • Javier E. Garay
Article

Abstract

Thermal conductivity is estimated using a 3-omega technique for an individual bismuth nanowire (diameter: 595 nm, length: 2.24 mm) covered with a quartz template. To evaluate the thermal conductivity of the nanowire, we propose a simple model of thermal and electrical transfer functions for the nanowire that assumes a linear combination of that of the line heater on the substrate and a suspended wire. Since the out-of-phase third-harmonic component of the electrical transfer function depends only on the thermal diffusivity of the nanowire, measurement of the frequency dependence is carried out. A distinct extreme value of the frequency has been observed, as expected, and estimation of the thermal conductivity of the nanowire covered with the quartz is attempted. Although the thermal conductivity at 300 K is 9.8 W/mK, somewhat smaller than that of bulk bismuth, the temperature dependence of the thermal conductivity is quite different from that of bulk bismuth, and decreased linearly with decreasing temperature. In particular, this shows that the thermal conductivity obtained is suppressed in the low-temperature region by phonon confinement in the nanowire.

Keywords

Individual bismuth nanowire thermal conductivity 3-omega technique 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, and P. Yang, Nature 451, 163 (2007).CrossRefGoogle Scholar
  2. 2.
    A.I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.-K. Yu, W.A. Goddard III, and J.R. Heath, Nature 451, 168 (2007).CrossRefGoogle Scholar
  3. 3.
    B. Poudel, Q. Hao, Y. Ma, Y. Yucheng, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M.S. Dresselhaus, G. Chen, and Z. Ren, Science 320, 634 (2008).CrossRefGoogle Scholar
  4. 4.
    D. Li, Y. Wu, P. Kim, L. Shi, P. Yang, and A. Majumdar, Appl. Phys. Lett. 83, 2934 (2003).CrossRefGoogle Scholar
  5. 5.
    A.L. Moore, M.T. Pettes, F. Zhou, and L. Shi, J. Appl. Phys. 106, 034310 (2009).CrossRefGoogle Scholar
  6. 6.
    J. Kang, J. Roh, W. Shim, J. Ham, J. Noh, and W. Lee, Adv. Mater. 23, 3414 (2011).CrossRefGoogle Scholar
  7. 7.
    J.W. Roh, K. Hippalgaonkar, J.H. Ham, R. Chen, M.Z. Li, P. Ercius, A. Majumdar, W. Kim, and W. Lee, ACS Nano 5, 3954 (2011).CrossRefGoogle Scholar
  8. 8.
    Y. Hasegawa, Y. Ishikawa, T. Komine, T.E. Huber, A. Suzuki, H. Morita, and H. Shirai, Appl. Phys. Lett. 85, 917 (2004).CrossRefGoogle Scholar
  9. 9.
    Y. Hasegawa, Y. Ishikawa, H. Morita, T. Komine, H. Shirai, and H. Nakamura, J. Appl. Phys. 97, 083907 (2005).CrossRefGoogle Scholar
  10. 10.
    Y. Hasegawa, Y. Ishikawa, H. Shirai, H. Morita, A. Kurokouchi, K. Wada, T. Komine, and H. Nakamura, Rev. Sci. Instrum. 76, 113902 (2005).CrossRefGoogle Scholar
  11. 11.
    Y. Hasegawa, H. Nakano, H. Morita, A. Kurokouchi, K. Wada, T. Komine, and H. Nakamura, J. Appl. Phys. 101, 033704 (2007).CrossRefGoogle Scholar
  12. 12.
    Y. Hasegawa, H. Nakano, H. Morita, T. Komine, H. Okumura, and H. Nakamura, J. Appl. Phys. 102, 073701 (2007).CrossRefGoogle Scholar
  13. 13.
    H. Iwasaki, H. Morita, and Y. Hasegawa, Jpn. J. Appl. Phys. 1, 3576 (2008).CrossRefGoogle Scholar
  14. 14.
    Y. Hasegawa, M. Murata, D. Nakamura, T. Komine, T. Taguchi, and S. Nakamura, J. Electron. Mater. 38, 944 (2009).CrossRefGoogle Scholar
  15. 15.
    Y. Hasegawa, M. Murata, D. Nakamura, T. Komine, T. Taguchi, and S. Nakamura, J. Appl. Phys. 105, 103715 (2009).CrossRefGoogle Scholar
  16. 16.
    M. Murata, D. Nakamura, Y. Hasegawa, T. Komine, T. Taguchi, S. Nakamura, V. Jovovic, and J.P. Heremans, Appl. Phys. Lett. 94, 192104 (2009).CrossRefGoogle Scholar
  17. 17.
    M. Murata, D. Nakamura, Y. Hasegawa, T. Komine, T. Taguchi, S. Nakamura, V. Jovovic, and J.P. Heremans, J. Appl. Phys. 105, 113706 (2009).CrossRefGoogle Scholar
  18. 18.
    Y. Hasegawa, M. Murata, D. Nakamura, and T. Komine, J. Appl. Phys. 106, 063703 (2009).CrossRefGoogle Scholar
  19. 19.
    D. Nakamura, M. Murata, Y. Hasegawa, T. Komine, D. Uematsu, S. Nakamura, and T. Taguchi, J. Electron. Mater. 39, 1960 (2010).CrossRefGoogle Scholar
  20. 20.
    T. Komine, M. Kuraishi, T. Teramoto, R. Sugita, Y. Hasegawa, M. Murata, and D. Nakamura, J. Electron. Mater. 39, 1606 (2010).CrossRefGoogle Scholar
  21. 21.
    M. Murata, D. Nakamura, Y. Hasegawa, T. Komine, D. Uematsu, S. Nakamura, and T. Taguchi, J. Electron. Mater. 39, 1536 (2010).CrossRefGoogle Scholar
  22. 22.
    Y. Hasegawa, D. Nakamura, M. Murata, H. Yamamoto, T. Komine, T. Taguchi, and S. Nakamura, J. Electron. Mater. 40, 1005 (2011).CrossRefGoogle Scholar
  23. 23.
    D. Nakamura, Y. Hasegawa, M. Murata, H. Yamamoto, and T. Komine, J. Appl. Phys. 110, 053702 (2009).CrossRefGoogle Scholar
  24. 24.
    M. Murata, H. Yamamoto, F. Tsunemi, Y. Hasegawa, and T. Komine, J. Electron. Mater. 41, 1442 (2012).CrossRefGoogle Scholar
  25. 25.
    C. Dames and G. Chen, Rev. Sci. Instrum. 76, 124902 (2005).CrossRefGoogle Scholar
  26. 26.
    D.G. Cahill, Rev. Sci. Instrum. 61, 802 (1990).CrossRefGoogle Scholar
  27. 27.
    Y. Hasegawa, D. Nakamura, M. Murata, H. Yamamoto, and T. Komine, Rev. Sci. Instrum. 81, 094901 (2010).CrossRefGoogle Scholar
  28. 28.
    D. Nakamura, Y. Hasegawa, M. Murata, H. Yamamoto, and T. Komine, Rev. Sci. Instrum. 82, 044903 (2010).CrossRefGoogle Scholar
  29. 29.
    C.F. Gallo, B.S. Chandrasekhar, and P.H. Shutter, J. Appl. Phys. 34, 144 (1963).CrossRefGoogle Scholar
  30. 30.
    M. Murata, F. Tsunemi, Y. Saito, K. Shirota, K. Fujiwara, Y. Hasegawa, and T. Komine, J. Electron. Mater. (accepted)Google Scholar
  31. 31.
    T.W. Cornelius, O. Picht, S. Müller, R. Neumann, F. Völklein, S. Karim, and J.L. Duan, J. Appl. Phys. 103, 103713 (2008).CrossRefGoogle Scholar
  32. 32.
    B. S. Farag and S. Tanuma, Technical Reports ISSP B18 (1976).Google Scholar
  33. 33.
    C. Kittel, Introduction to Solid State Physics (Singapore: Wiley, 2004).Google Scholar

Copyright information

© TMS 2013

Authors and Affiliations

  • Yasuhiro Hasegawa
    • 1
  • Masayuki Murata
    • 1
  • Fumiaki Tsunemi
    • 1
  • Yusuke Saito
    • 1
  • Katsuhito Shirota
    • 1
  • Takashi Komine
    • 2
  • Chris Dames
    • 3
  • Javier E. Garay
    • 4
  1. 1.Faculty of EngineeringSaitama UniversitySaitamaJapan
  2. 2.Faculty of EngineeringIbaraki UniversityHitachiJapan
  3. 3.Department of Mechanical EngineeringUniversity of CaliforniaBerkeleyUSA
  4. 4.Department of Mechanical EngineeringUniversity of CaliforniaRiversideUSA

Personalised recommendations