Journal of Electronic Materials

, Volume 42, Issue 6, pp 1073–1084 | Cite as

Transport Properties of Bulk Thermoelectrics: An International Round-Robin Study, Part II: Thermal Diffusivity, Specific Heat, and Thermal Conductivity

  • Hsin Wang
  • Wallace D. Porter
  • Harald Böttner
  • Jan König
  • Lidong Chen
  • Shengqiang Bai
  • Terry M. Tritt
  • Alex Mayolet
  • Jayantha Senawiratne
  • Charlene Smith
  • Fred Harris
  • Patricia Gilbert
  • Jeff Sharp
  • Jason Lo
  • Holger Kleinke
  • Laszlo Kiss
Article

Abstract

For bulk thermoelectrics, improvement of the figure of merit ZT to above 2 from the current values of 1.0 to 1.5 would enhance their competitiveness with alternative technologies. In recent years, the most significant improvements in ZT have mainly been due to successful reduction of thermal conductivity. However, thermal conductivity is difficult to measure directly at high temperatures. Combined measurements of thermal diffusivity, specific heat, and mass density are a widely used alternative to direct measurement of thermal conductivity. In this work, thermal conductivity is shown to be the factor in the calculation of ZT with the greatest measurement uncertainty. The International Energy Agency (IEA) group, under the implementing agreement for Advanced Materials for Transportation (AMT), has conducted two international round-robins since 2009. This paper, part II of our report on the international round-robin testing of transport properties of bulk bismuth telluride, focuses on thermal diffusivity, specific heat, and thermal conductivity measurements.

Keywords

Thermoelectric thermal conductivity thermal diffusivity specific heat power factor figure of merit 

Notes

Acknowledgements

The authors would like to thank the International Energy Agency under the Implementing Agreement for Advanced Materials for Transportation for supporting this work and the assistant secretary for Energy Efficiency and Renewable Energy of the Department of Energy and the Propulsion Materials Program under the Vehicle Technologies Program. We would like to acknowledge support from all participating institutions and Oak Ridge National Laboratory managed by UT-Battelle LLC under contract DE-AC05000OR22725.

References

  1. 1.
    R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, Nature 413, 597 (2001).CrossRefGoogle Scholar
  2. 2.
    K.F. Hsu, S. Loo, F. Guo, W. Chen, J.S. Dyck, C. Uher, T. Hogan, E.K. Polychroniadis, and M.G. Kanatzidis, Science 303, 818 (2004).CrossRefGoogle Scholar
  3. 3.
    T. Caillat, J.-P. Fleurial, and A. Borshchevsky, J. Phys. Chem. Solids 58, 1119 (1997).CrossRefGoogle Scholar
  4. 4.
    B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M.S. Dresselhaus, G. Chen, and Z. Ren, Science 320, 634 (2008).CrossRefGoogle Scholar
  5. 5.
    P. Kim, L. Shi, A. Majumdar, and P.L. McEuen, Phys. Rev. Lett. 87, 215502 (2001).CrossRefGoogle Scholar
  6. 6.
    G.S. Nolas, G.A. Slack, and S.B. Schujman, Semicond. Semimet. 69, 255 (2000).CrossRefGoogle Scholar
  7. 7.
    B.C. Sales, D. Mandrus, and R.K. Williams, Science 272, 1325 (1996).CrossRefGoogle Scholar
  8. 8.
    G.S. Nolas, M. Kaeser, R.T. Littletonand, and T.M. Tritt, Appl. Phys. Lett. 77, 1855 (2000).CrossRefGoogle Scholar
  9. 9.
    D.T. Morelli and G.P. Meisner, J. Appl. Phys. 77, 3777 (1995).CrossRefGoogle Scholar
  10. 10.
    C. Uher, Semicond. Semimet. 69, 139 (2000).CrossRefGoogle Scholar
  11. 11.
    V.L. Kuznetsov, L.A. Kuznetsova, A.E. Kaliazin, and D.M. Rowe, J. Appl. Phys. 87, 7871 (2000).CrossRefGoogle Scholar
  12. 12.
    J. Martin, G.S. Nolas, H. Wang, and J. Yang, J. Appl. Phys. 102, 103719 (2007).CrossRefGoogle Scholar
  13. 13.
    W. Jeischko, Metall. Trans. A 1A, 3159 (1970).Google Scholar
  14. 14.
    S.J. Poon, ed. T.M. Tritt, Semiconductors and Semimetals, Vol. 70, Chap. 2, eds., R.K. Willardson and E.R. Weber (Academic, New York, 2001), p. 37.Google Scholar
  15. 15.
    G.A. Slack, CRC Handbook of Thermoelectrics, ed. D.M. Rowe (CRC, Boca Raton, FL, 1995), pp. 407.Google Scholar
  16. 16.
    D. J. Singh, Sci. Advan. Mater. 3, Special Issue: SI, 561 (2011).Google Scholar
  17. 17.
    J.F. Li, W.S. Liu, L.D. Zhao, and M. Zhou, NPG Asia Mater. 2, 152 (2010).CrossRefGoogle Scholar
  18. 18.
    G.S. Nolas, J. Poon, and M. Kanatzidis, Mater. Bull. 31, 199 (2006).CrossRefGoogle Scholar
  19. 19.
    A.J. Minnich, M.S. Dresselhaus, Z.F. Ren, and G. Chen, Energy Environ. Sci. 2, 466 (2009).CrossRefGoogle Scholar
  20. 20.
    Y.Q. Cao, X.B. Zhao, T.J. Zhu, X.B. Zhang, and J.P. Tu, Appl. Phys. Lett. 92, 143106 (2008).CrossRefGoogle Scholar
  21. 21.
    S.F. Fan, J.N. Zhao, J. Guo, Q.Y. Yan, J. Ma, and H.H. Hng, Appl. Phys. Lett. 96, 182104 (2010).CrossRefGoogle Scholar
  22. 22.
    G. Joshi, X. Yan, H.Z. Wang, W.S. Liu, G. Chen, and G.Z.F. Ren, Adv. Energy Mater. 1, 643 (2011).Google Scholar
  23. 23.
    M. Zhou, J.F. Li, and T. Kita, J. Am. Chem. Soc. 130, 4527 (2008).CrossRefGoogle Scholar
  24. 24.
    I. Matsubara, R. Funahashi, T. Takeuchi, and S. Sodeoka, J. Appl. Phys. 90, 462 (2001).CrossRefGoogle Scholar
  25. 25.
    Y.H. Liu, Y.H. Lin, Z. Shi, C.W. Nan, and Z. Shen, J. Am. Ceram. Soc. 88, 1337 (2005).CrossRefGoogle Scholar
  26. 26.
    W.J. Xie, X.F. Tang, Y.G. Yan, Q.J. Zhang, and T.M. Tritt, Appl. Phys. Lett. 94, 102111 (2009).CrossRefGoogle Scholar
  27. 27.
    X.F. Tang, W.J. Xie, H. Li, W.Y. Zhao, Q.J. Zhang, and M. Niino, Appl. Phys. Lett. 90, 012102 (2007).CrossRefGoogle Scholar
  28. 28.
    H. Li, X.F. Tang, X. Su, Q.J. Zhang, and C. Uher, J. Phys. D Appl. Phys. 42, 145409 (2009).CrossRefGoogle Scholar
  29. 29.
    G. Joshi, H. Lee, Y.C. Lan, X.W. Wang, G.H. Zhu, D.Z. Wang, R.W. Gould, D.C. Cuff, M.Y. Tang, M.S. Dresselhaus, G. Chen, and Z.F. Ren, Nano Lett. 8, 4670 (2008).CrossRefGoogle Scholar
  30. 30.
    Y. Ma, Q. Hao, B. Poudel, Y.C. Lan, B. Yu, D.Z. Wang, G. Chen, and Z.F. Ren, Nano Lett. 8, 2580 (2008).CrossRefGoogle Scholar
  31. 31.
    NIST SRM 3451—Low Temperature Seebeck Coefficient Standard (10 K to 390 K) (2011).Google Scholar
  32. 32.
    N.D. Lowhorn, W. Wong-Ng, Z.Q. Lu, J. Martin, J.M.L. Green, E.L. Thomas, J.E. Bonevich, N.R. Dilley, and J. Sharp, J. Mater. Res. 26, 1983 (2011).CrossRefGoogle Scholar
  33. 33.
    D.G. Cahill, K.E. Goodson, and A. Majumdar, J. Heat Transf.-Trans. ASME. 124, 223 (2002).CrossRefGoogle Scholar
  34. 34.
    M. Maqsood, M. Arshad, and M. Zafarullah, Supercond. Sci. Technol. 9, 321 (1996).CrossRefGoogle Scholar
  35. 35.
    W.J. Parker, R.J. Jenkins, C.P. Butler, and G.L. Abbott, J. Appl. Phys. 32, 1679 (1961).CrossRefGoogle Scholar
  36. 36.
    H.S. Carslaw and J.C. Jaeger, Conduction of Heat in Solids, Oxford University Press, New York, 2nd ed. (1959), p. 101.Google Scholar
  37. 37.
    L.M. Clark and R.E. Taylor, J. Appl. Phys. 46, 714 (1975).CrossRefGoogle Scholar
  38. 38.
    R.D. Cowan, J. Appl. Phys. 34, 926 (1963).CrossRefGoogle Scholar
  39. 39.
    ASTM Designation E 1461, 933 (1992).Google Scholar
  40. 40.
    E.S.R. Gopal, Specific Heats at Low Temperatures (New York: Plenum, 1996), p. 9.Google Scholar
  41. 41.
    J.A. Koski, Proceedings of the 8th Symposium of Thermophysical Properties, Vol. II, 94 (1981).Google Scholar
  42. 42.
    R.C. Heckman, Thermal Conductivity 14, eds. P.G. Klemens, and T.K. Chu. Plenum, New York, 491 (1974).Google Scholar
  43. 43.
    J.A. Cape and G.W. Lehman, J. Appl. Phys. 34, 1909 (1963).CrossRefGoogle Scholar
  44. 44.
    H. Wang, W.D. Porter, H. Böttner, J. König, L. Chen, S.Q. Bai, T.M. Tritt, A. Mayolet, J. Senawiratne, C. Smith, F. Harris, P. Gilbert, J. Sharp, J. Lo, H. Kleinke and L. Kiss, J. Electron. Mater. (2013). doi:10.1007/s11664-012-2396-8.

Copyright information

© TMS 2013

Authors and Affiliations

  • Hsin Wang
    • 1
  • Wallace D. Porter
    • 1
  • Harald Böttner
    • 2
  • Jan König
    • 2
  • Lidong Chen
    • 3
  • Shengqiang Bai
    • 3
  • Terry M. Tritt
    • 4
  • Alex Mayolet
    • 5
  • Jayantha Senawiratne
    • 5
  • Charlene Smith
    • 5
  • Fred Harris
    • 6
  • Patricia Gilbert
    • 7
  • Jeff Sharp
    • 7
  • Jason Lo
    • 8
  • Holger Kleinke
    • 9
  • Laszlo Kiss
    • 10
  1. 1.Oak Ridge National LaboratoryOak RidgeUSA
  2. 2.Fraunhofer Institute for Physical Measurement TechniquesFreiburgGermany
  3. 3.Shanghai Institute of CeramicsChinese Academy of SciencesShanghaiChina
  4. 4.Clemson UniversityClemsonUSA
  5. 5.Corning Inc.CorningUSA
  6. 6.ZT-Plus Inc.AzusaUSA
  7. 7.Marlow IndustriesDallasUSA
  8. 8.CANMETHamiltonCanada
  9. 9.University of WaterlooWaterlooCanada
  10. 10.University of Quebec at ChicoutimiChicoutimiCanada

Personalised recommendations