Journal of Electronic Materials

, Volume 42, Issue 7, pp 2035–2042 | Cite as

Thermal Management Optimization of a Thermoelectric-Integrated Methanol Evaporator Using a Compact CFD Modeling Approach

  • Xin Gao
  • Min Chen
  • G. Jeffrey Snyder
  • Søren Juhl Andreasen
  • Søren Knudsen Kær

To better manage the magnitude and direction of the heat flux in an exchanger-based methanol evaporator of a fuel cell system, thermoelectric (TE) modules can be deployed as TE heat flux regulators (TERs). The performance of the TE-integrated evaporator is strongly influenced by its heat exchange structure. The structure transfers the fuel cell exhaust heat to the evaporation chamber to evaporate the methanol, where TE modules are installed in between to facilitate the heat regulation. In this work, firstly, a numerical study is conducted to determine the working currents and working modes of the TERs under the system working condition fluctuations and during the system cold start. A three-dimensional evaporator model is generated in ANSYS FLUENT® by combining a compact TE model with various heat exchange structure geometries. The compact TE model can dramatically improve the computational efficiency, and uses a different material property acquisition method based on module manufacturers’ datasheets. Secondly, a simulation study is carried out on the novel evaporator to minimize its thermal resistance and to assess the evaporator pressure drop. The factors studied include the type of fins in the heat exchange structure, the thickness of the fins, the axial conduction penalty, etc. Results show that the TE-integrated evaporator can work more efficiently and smoothly during both load fluctuations and system cold start, offering superior performance.


Thermoelectric heat regulator TE-integrated methanol evaporator heat regulation heat loss compact TE model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y. Wang, K. Chen, J. Mishler, S.C. Cho, and X.C. Adroher, Appl. Energy 88, 981 (2011).CrossRefGoogle Scholar
  2. 2.
    A. Arsalis, M.P. Nielsen, and S.K. Kær, Energy 36, 993 (2011).CrossRefGoogle Scholar
  3. 3.
    X. Gao, M. Chen, S.J. Andreasen, and S.K. Kær, J. Electron. Mater. 41, 1838 (2012).CrossRefGoogle Scholar
  4. 4.
    F. Mueller, F. Jabbari, R. Gaynor, and J. Brouwer, J. Power Sources 172, 308 (2007).CrossRefGoogle Scholar
  5. 5.
    J. Yang and F.R. Stabler, J. Electron. Mater. 38, 1245 (2009).CrossRefGoogle Scholar
  6. 6.
    D. Martin, U.S. Patent US20040042957 Al (4 March 2004).Google Scholar
  7. 7.
    Methanex Corporation, Technical Information & Safe Handling Guide for Methanol (Version 3.0, September 2006).Google Scholar
  8. 8.
    X. Gao, S.J. Andreasen, M. Chen, and S.K. Kær, Int. J. Hydrogen Energy 37, 8490 (2012).CrossRefGoogle Scholar
  9. 9.
    M. Chen, L.A. Rosendahl, and T.J. Condra, Int. J. Heat Mass Transf. 54, 345 (2011).CrossRefGoogle Scholar
  10. 10.
    M. Chen, S.J. Anderson, L.A. Rosendahl, S.K. Kaer, and T.J. Condra, J. Electron. Mater. 39, 1593 (2010).CrossRefGoogle Scholar
  11. 11.
    M. Chen, Y. Sasaki, and R.O. Suzuki, Mater. Trans. 52, 1549 (2011).CrossRefGoogle Scholar
  12. 12.
    E.E. Antonova and D.C. Looman, International Conference on Thermoelectrics (2005), p. 200.Google Scholar
  13. 13.
    M. Chen and G.J. Snyder, Int. J. Heat Mass Transf. (2013). doi: 10.1016/j.ijheatmasstransfer.2013.01.020.
  14. 14.
    M. Jaegle, Proceedings ECT2007 (2007), p. 222.Google Scholar
  15. 15.
    K.D. Smith (Master’s thesis, Rochester Institute of Technology, 2009).Google Scholar
  16. 16.
    S.J. Andreasen, J.L. Jespersen, E. Schaltz, and S.K. Kær, Fuel Cells 9, 463 (2009).CrossRefGoogle Scholar
  17. 17.
    G. Nellis and S. Klein, Heat transfer (New York: Cambridge University Press, 2009).Google Scholar
  18. 18.
    S.J. Andreasen, S.K. Kær, and M.P. Nielsen, ECS Trans. 12, 571 (2008).CrossRefGoogle Scholar

Copyright information

© TMS 2013

Authors and Affiliations

  • Xin Gao
    • 1
  • Min Chen
    • 1
  • G. Jeffrey Snyder
    • 2
  • Søren Juhl Andreasen
    • 1
  • Søren Knudsen Kær
    • 1
  1. 1.Department of Energy TechnologyAalborg UniversityAalborgDenmark
  2. 2.Materials Science, California Institute of TechnologyPasadenaUSA

Personalised recommendations