Journal of Electronic Materials

, Volume 42, Issue 7, pp 2030–2034 | Cite as

Ge/SiGe Superlattices for Thermoelectric Devices Grown by Low-Energy Plasma-Enhanced Chemical Vapor Deposition

  • S. Cecchi
  • T. Etzelstorfer
  • E. Müller
  • A. Samarelli
  • L. Ferre Llin
  • D. Chrastina
  • G. Isella
  • J. Stangl
  • J. M. R. Weaver
  • P. Dobson
  • D. J. Paul
Article

Abstract

Ge/SiGe multiple quantum wells are presented as efficient material for room-temperature thermoelectric generators monolithically integrated onto silicon. We have deposited and characterized 10-μm-thick heterostructures engineered for lateral devices, in which both heat and current flow parallel to the multilayer. In this paper we investigate in detail the structural and interface quality by means of x-ray diffraction and transmission electron microscopy. Thermoelectric measurements, giving a figure of merit of 0.04 to 0.08, together with mobility spectra and defect analysis suggest possibilities of even higher efficiency. Nevertheless, the high power factor of 2 mW/K2m to 6 mW/K2m is promising for applications.

Keywords

Silicon germanium multiple quantum well thermoelectrics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D.M. Rowe, ed., Thermoelectrics Handbook: Macro to Nano (Boca Raton, FL: CRC Press Taylor and Francis, 2006).Google Scholar
  2. 2.
    L.D. Hicks and M.S. Dresselhaus, Phys. Rev. B 47, 16631 (1993).CrossRefGoogle Scholar
  3. 3.
    R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, Nature 413, 597 (2001).CrossRefGoogle Scholar
  4. 4.
    B. Rössner, D. Chrastina, G. Isella, and H. von Känel, Appl. Phys. Lett. 84, 3058 (2004).CrossRefGoogle Scholar
  5. 5.
    G. Isella, D. Chrastina, B. Rössner, T. Hackbarth, H.J. Herzog, U. König, and H. von Känel, Solid State Electron. 48, 1317 (2004).CrossRefGoogle Scholar
  6. 6.
    D.J. Paul, Laser Photon. Rev. 4, 610 (2010).CrossRefGoogle Scholar
  7. 7.
    W.J. Bartels, J. Hornstra, and D.J.W. Lobeek, Acta Crystallogr. A 42, 539 (1986).CrossRefGoogle Scholar
  8. 8.
    S. Cecchi, T. Etzelstorfer, E. Müller, A. Samarelli, L.F. Llin, D. Chrastina, G. Isella, J. Stangl, and D.J. Paul, J. Mater. Sci. doi:10.1007/s10853-012-6825-0. Accessed September 2012 (2012).
  9. 9.
    D.J. Paul, A. Samarelli, L. Ferre-Llin, J.R. Watling, Y. Zhang, J.M.R. Weaver, P.S. Dobson, S. Cecchi, J. Frigerio, F. Isa, D. Chrastina, G. Isella, T. Etzelstorfer, J. Stangl, and E. Müller Gubler, Proceedings of the 12th IEEE International Conference on Nanotechnology (IEEE-NANO) (Piscataway, NJ: IEEE, 2012), pp. 1–5.Google Scholar
  10. 10.
    A. Samarelli, L. Ferre Llin, Y. Zhang, J.M.R. Weaver, P. Dobson, S. Cecchi, D. Chrastina, G. Isella, T. Etzelstorfer, J. Stangl, E. Müller Gubler, and D.J. Paul, J. Electron. Mater. doi:10.1007/s11664-012-2287-z. Accessed November 2012 (2012).
  11. 11.
    D. Chrastina, J.P. Hague, and D.R. Leadley, J. Appl. Phys. 94, 6583 (2003).CrossRefGoogle Scholar
  12. 12.
    J.R. Watling and D.J. Paul, J. Appl. Phys. 110, 114508 (2011).CrossRefGoogle Scholar

Copyright information

© TMS 2013

Authors and Affiliations

  • S. Cecchi
    • 1
  • T. Etzelstorfer
    • 2
  • E. Müller
    • 3
  • A. Samarelli
    • 4
  • L. Ferre Llin
    • 4
  • D. Chrastina
    • 1
  • G. Isella
    • 1
  • J. Stangl
    • 2
  • J. M. R. Weaver
    • 4
  • P. Dobson
    • 4
  • D. J. Paul
    • 4
  1. 1.L-NESS Politecnico di Milano, Polo Territoriale di ComoComoItaly
  2. 2.Institute of Semiconductor and Solid State PhysicsJohannes Kepler UniversityLinzAustria
  3. 3.Electron Microscopy ETH Zurich (EMEZ)ZurichSwitzerland
  4. 4.School of Engineering, University of GlasgowGlasgowUK

Personalised recommendations