Journal of Electronic Materials

, Volume 42, Issue 7, pp 2025–2029 | Cite as

Low-Temperature Physical and Thermoelectric Properties of Ba8Ni5Ge41

  • Jingtao XuEmail author
  • Jiazhen Wu
  • Yoichi Tanabe
  • Satoshi Heguri
  • Gang Mu
  • Hidekazu Shimotani
  • Katsumi Tanigaki


Resistivity, Hall resistivity, thermopower, thermal conductivity, and magnetization are reported for polycrystalline Ba8Ni5Ge41. Ba8Ni5Ge41 is diamagnetic with susceptibility χ dia = (−2.4 to −2.82) × 10−7 emu/g. Semiconductor-like behavior was observed for the resistivity. The thermopower shows positive values for a wide temperature range. The Hall resistivity indicates the dominance of electrons, suggesting the existence of multiband conductance. At room temperature, the thermal conductivity is 1.78(5) W/K m. The highest ZT of Ba8Ni5Ge41 is 0.0016 at about 278 K.


Clathrates thermoelectric multiband conduction zintl phase 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.L. Cohn, G.S. Nolas, V. Fessatidis, T.H. Metcalf, and G.A. Slack, Phys. Rev. Lett. 82, 779 (1999).CrossRefGoogle Scholar
  2. 2.
    B.C. Sales, B.C. Chakoumakos, R. Jin, J.R. Thompson, and D. Mandrus, Phys. Rev. B 63, 245113 (2001).CrossRefGoogle Scholar
  3. 3.
    A. Saramat, G. Svensson, A.E.C. Palmqvist, C. Stiewe, E. Mueller, D. Platzek, S.G.K. Williams, D.M. Rowe, J.D. Bryan, and G.D. Stucky, J. Appl. Phys. 99, 023708 (2006).CrossRefGoogle Scholar
  4. 4.
    X. Shi, J. Yang, S.Q. Bai, J.H. Yang, H. Wang, M.F. Chi, J.R. Salvador, W.Q. Zhang, L.D. Chen, and W. Wong-Ng, Adv. Funct. Mater. 20, 755 (2010).CrossRefGoogle Scholar
  5. 5.
    M. Christensen, A.B. Abrahamsen, N.B. Christensen, F. Juranyi, N.H. Andersen, K. Lefmann, J. Andreasson, C.R.H. Bahl, and B.B. Iversen, Nat. Mater. 7, 811–815 (2008).CrossRefGoogle Scholar
  6. 6.
    J.T. Xu, J. Tang, K. Sato, Y. Tanabe, H. Miyasaka, M. Yamashita, S. Heguri, and K. Tanigaki, Phys. Rev. B 81, 085206 (2010).CrossRefGoogle Scholar
  7. 7.
    G. Cordier and P. Woll, J. Less-Common Met. 169, 291 (1991).CrossRefGoogle Scholar
  8. 8.
    L.T.K. Nguyen, U. Aydemir, M. Baitinger, E. Bauer, H. Borrmann, U. Burkhardt, J. Custers, A. Haghighirad, R. Höfler, K.D. Luther, F. Ritter, W. Assums, Yu. Grin, and S. Paschen, Dalton Trans. 39, 1071 (2010).CrossRefGoogle Scholar
  9. 9.
    S. Johnsen, A. Bentien, G.K.H. Madsen, M. Nygren, and B.B. Iversen, Phys. Rev. B 76, 45126 (2007).CrossRefGoogle Scholar
  10. 10.
    A. Bentien, S. Johnsen, and B.B. Iversen, Phys. Rev. B 73, 094301 (2006).CrossRefGoogle Scholar
  11. 11.
    L.T.K. Nguyen, U. Aydemir, M. Baitinger, J. Custers, A. Haghighirad, R. Höfler, K.D. Luther, F. Ritter, Yu. Grin, W. Assums, and S. Paschen, J. Electron. Mater. 39, 1386 (2010).CrossRefGoogle Scholar
  12. 12.
    J.T. Xu, J.Z. Wu, S. Heguri, G. Mu, Y. Tanabe, and K. Tanigaki, J. Electron. Mater. 41, 1177 (2012).CrossRefGoogle Scholar
  13. 13.
    H. Zhang, J.T. Zhao, M.B. Tang, Z.Y. Man, H.H. Chen, and X.X. Yang, J. Phys. Chem. Solids 70, 312 (2009).CrossRefGoogle Scholar
  14. 14.
    U. Aydemir, C. Candolfi, H. Borrmann, M. Baitinger, A. Ormeci, W. Carrillo-Cabrera, C. Chubilleau, B. Lenoir, A. Dauscher, N. Oeschler, F. Steglich, and Yu. Grin, Dalton Trans. 39, 1078–1088 (2010).CrossRefGoogle Scholar
  15. 15.
    C. Candolfi, A. Ormeci, U. Aydemir, M. Baitinger, N. Oeschler, Yu. Grin, and F. Steglich, Phys. Rev. B 84, 205118 (2011).CrossRefGoogle Scholar
  16. 16.
    C. Candolfi, U. Aydemir, A. Ormeci, M. Baitinger, N. Oeschler, F. Steglich, and Yu. Grin, Phys. Rev. B 83, 205102 (2011).CrossRefGoogle Scholar

Copyright information

© TMS 2013

Authors and Affiliations

  • Jingtao Xu
    • 1
    Email author
  • Jiazhen Wu
    • 2
  • Yoichi Tanabe
    • 1
  • Satoshi Heguri
    • 2
  • Gang Mu
    • 2
  • Hidekazu Shimotani
    • 2
  • Katsumi Tanigaki
    • 1
    • 2
  1. 1.WPI-AIMRTohoku UniversitySendaiJapan
  2. 2.Department of Physics, Graduate School of ScienceTohoku UniversitySendaiJapan

Personalised recommendations